This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of A . (Contributed by Mario Carneiro, 24-Nov-2013) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fipwuni | ⊢ ( fi ‘ 𝐴 ) ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | ⊢ ( 𝐴 ∈ V → ∪ 𝐴 ∈ V ) | |
| 2 | 1 | pwexd | ⊢ ( 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V ) |
| 3 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 4 | fiss | ⊢ ( ( 𝒫 ∪ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝒫 ∪ 𝐴 ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝒫 ∪ 𝐴 ) ) |
| 6 | ssinss1 | ⊢ ( 𝑥 ⊆ ∪ 𝐴 → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ 𝐴 ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | elpw | ⊢ ( 𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴 ) |
| 9 | 7 | inex1 | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 10 | 9 | elpw | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ∪ 𝐴 ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ 𝐴 ) |
| 11 | 6 8 10 | 3imtr4i | ⊢ ( 𝑥 ∈ 𝒫 ∪ 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ∪ 𝐴 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑥 ∈ 𝒫 ∪ 𝐴 ∧ 𝑦 ∈ 𝒫 ∪ 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ∪ 𝐴 ) |
| 13 | 12 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝒫 ∪ 𝐴 ∀ 𝑦 ∈ 𝒫 ∪ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ∪ 𝐴 |
| 14 | inficl | ⊢ ( 𝒫 ∪ 𝐴 ∈ V → ( ∀ 𝑥 ∈ 𝒫 ∪ 𝐴 ∀ 𝑦 ∈ 𝒫 ∪ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ∪ 𝐴 ↔ ( fi ‘ 𝒫 ∪ 𝐴 ) = 𝒫 ∪ 𝐴 ) ) | |
| 15 | 2 14 | syl | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ 𝒫 ∪ 𝐴 ∀ 𝑦 ∈ 𝒫 ∪ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ∪ 𝐴 ↔ ( fi ‘ 𝒫 ∪ 𝐴 ) = 𝒫 ∪ 𝐴 ) ) |
| 16 | 13 15 | mpbii | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝒫 ∪ 𝐴 ) = 𝒫 ∪ 𝐴 ) |
| 17 | 5 16 | sseqtrd | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ 𝒫 ∪ 𝐴 ) |
| 18 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∅ ) | |
| 19 | 0ss | ⊢ ∅ ⊆ 𝒫 ∪ 𝐴 | |
| 20 | 18 19 | eqsstrdi | ⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ 𝒫 ∪ 𝐴 ) |
| 21 | 17 20 | pm2.61i | ⊢ ( fi ‘ 𝐴 ) ⊆ 𝒫 ∪ 𝐴 |