This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fisn | ⊢ ( fi ‘ { 𝐴 } ) = { 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 2 | elsni | ⊢ ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 ) | |
| 3 | 1 2 | ineqan12d | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐴 ) ) |
| 4 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 5 | 3 4 | eqtrdi | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 ∩ 𝑦 ) = 𝐴 ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | inex1 | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 8 | 7 | elsn | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ { 𝐴 } ↔ ( 𝑥 ∩ 𝑦 ) = 𝐴 ) |
| 9 | 5 8 | sylibr | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 ∩ 𝑦 ) ∈ { 𝐴 } ) |
| 10 | 9 | rgen2 | ⊢ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { 𝐴 } |
| 11 | snex | ⊢ { 𝐴 } ∈ V | |
| 12 | inficl | ⊢ ( { 𝐴 } ∈ V → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { 𝐴 } ↔ ( fi ‘ { 𝐴 } ) = { 𝐴 } ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { 𝐴 } ↔ ( fi ‘ { 𝐴 } ) = { 𝐴 } ) |
| 14 | 10 13 | mpbi | ⊢ ( fi ‘ { 𝐴 } ) = { 𝐴 } |