This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprsubrg.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprsubrg | ⊢ ( SubRing ‘ 𝑅 ) = ( SubRing ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprsubrg.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | subrgrcl | ⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 3 | subrgrcl | ⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) → 𝑂 ∈ Ring ) | |
| 4 | 1 | opprringb | ⊢ ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring ) |
| 5 | 3 4 | sylibr | ⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) → 𝑅 ∈ Ring ) |
| 6 | 1 | opprsubg | ⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |
| 7 | 6 | a1i | ⊢ ( 𝑅 ∈ Ring → ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) ) |
| 9 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 13 | 10 11 1 12 | opprmul | ⊢ ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) |
| 14 | 13 | eleq1i | ⊢ ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) |
| 15 | 14 | 2ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) |
| 16 | 9 15 | bitr4i | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) |
| 17 | 16 | a1i | ⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) |
| 18 | 8 17 | 3anbi13d | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 19 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 20 | 10 19 11 | issubrg2 | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑥 ) ) ) |
| 21 | 1 10 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 22 | 1 19 | oppr1 | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) |
| 23 | 21 22 12 | issubrg2 | ⊢ ( 𝑂 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 24 | 4 23 | sylbi | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑂 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 25 | 18 20 24 | 3bitr4d | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRing ‘ 𝑂 ) ) ) |
| 26 | 2 5 25 | pm5.21nii | ⊢ ( 𝑥 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRing ‘ 𝑂 ) ) |
| 27 | 26 | eqriv | ⊢ ( SubRing ‘ 𝑅 ) = ( SubRing ‘ 𝑂 ) |