This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgnzr.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| Assertion | subrgnzr | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgnzr.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 3 | 2 | adantl | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 4 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 6 | 4 5 | nzrnz | ⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 8 | 1 4 | subrg1 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 10 | 1 5 | subrg0 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 12 | 7 9 11 | 3netr3d | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
| 13 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 15 | 13 14 | isnzr | ⊢ ( 𝑆 ∈ NzRing ↔ ( 𝑆 ∈ Ring ∧ ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) ) |
| 16 | 3 12 15 | sylanbrc | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ NzRing ) |