This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional form of opprring . (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprringb | ⊢ ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | 1 | opprring | ⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
| 3 | eqid | ⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) | |
| 4 | 3 | opprring | ⊢ ( 𝑂 ∈ Ring → ( oppr ‘ 𝑂 ) ∈ Ring ) |
| 5 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | 1 6 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 8 | 3 7 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑂 ) ) |
| 9 | 8 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑂 ) ) ) |
| 10 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 11 | 1 10 | oppradd | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 12 | 3 11 | oppradd | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝑂 ) ) |
| 13 | 12 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) |
| 14 | 13 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) ) |
| 15 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 16 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑂 ) ) = ( .r ‘ ( oppr ‘ 𝑂 ) ) | |
| 17 | 7 15 3 16 | opprmul | ⊢ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 6 18 1 15 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
| 20 | 17 19 | eqtr2i | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) |
| 21 | 20 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) ) |
| 22 | 5 9 14 21 | ringpropd | ⊢ ( ⊤ → ( 𝑅 ∈ Ring ↔ ( oppr ‘ 𝑂 ) ∈ Ring ) ) |
| 23 | 22 | mptru | ⊢ ( 𝑅 ∈ Ring ↔ ( oppr ‘ 𝑂 ) ∈ Ring ) |
| 24 | 4 23 | sylibr | ⊢ ( 𝑂 ∈ Ring → 𝑅 ∈ Ring ) |
| 25 | 2 24 | impbii | ⊢ ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring ) |