This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprsubg | ⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 4 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 5 | 1 4 | oppradd | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 6 | 3 5 | grpprop | ⊢ ( 𝑅 ∈ Grp ↔ 𝑂 ∈ Grp ) |
| 7 | biid | ⊢ ( 𝑥 ⊆ ( Base ‘ 𝑅 ) ↔ 𝑥 ⊆ ( Base ‘ 𝑅 ) ) | |
| 8 | eqid | ⊢ ( 𝑅 ↾s 𝑥 ) = ( 𝑅 ↾s 𝑥 ) | |
| 9 | 8 2 | ressbas | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑥 ) ) ) |
| 10 | 9 | elv | ⊢ ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑥 ) ) |
| 11 | eqid | ⊢ ( 𝑂 ↾s 𝑥 ) = ( 𝑂 ↾s 𝑥 ) | |
| 12 | 11 3 | ressbas | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑂 ↾s 𝑥 ) ) ) |
| 13 | 12 | elv | ⊢ ( 𝑥 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ ( 𝑂 ↾s 𝑥 ) ) |
| 14 | 10 13 | eqtr3i | ⊢ ( Base ‘ ( 𝑅 ↾s 𝑥 ) ) = ( Base ‘ ( 𝑂 ↾s 𝑥 ) ) |
| 15 | 8 4 | ressplusg | ⊢ ( 𝑥 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝑥 ) ) ) |
| 16 | 11 5 | ressplusg | ⊢ ( 𝑥 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑂 ↾s 𝑥 ) ) ) |
| 17 | 15 16 | eqtr3d | ⊢ ( 𝑥 ∈ V → ( +g ‘ ( 𝑅 ↾s 𝑥 ) ) = ( +g ‘ ( 𝑂 ↾s 𝑥 ) ) ) |
| 18 | 17 | elv | ⊢ ( +g ‘ ( 𝑅 ↾s 𝑥 ) ) = ( +g ‘ ( 𝑂 ↾s 𝑥 ) ) |
| 19 | 14 18 | grpprop | ⊢ ( ( 𝑅 ↾s 𝑥 ) ∈ Grp ↔ ( 𝑂 ↾s 𝑥 ) ∈ Grp ) |
| 20 | 6 7 19 | 3anbi123i | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑥 ) ∈ Grp ) ↔ ( 𝑂 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑂 ↾s 𝑥 ) ∈ Grp ) ) |
| 21 | 2 | issubg | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝑅 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑥 ) ∈ Grp ) ) |
| 22 | 3 | issubg | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ↔ ( 𝑂 ∈ Grp ∧ 𝑥 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑂 ↾s 𝑥 ) ∈ Grp ) ) |
| 23 | 20 21 22 | 3bitr4i | ⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) |
| 24 | 23 | eqriv | ⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |