This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprsubrg.o | |- O = ( oppR ` R ) |
|
| Assertion | opprsubrg | |- ( SubRing ` R ) = ( SubRing ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprsubrg.o | |- O = ( oppR ` R ) |
|
| 2 | subrgrcl | |- ( x e. ( SubRing ` R ) -> R e. Ring ) |
|
| 3 | subrgrcl | |- ( x e. ( SubRing ` O ) -> O e. Ring ) |
|
| 4 | 1 | opprringb | |- ( R e. Ring <-> O e. Ring ) |
| 5 | 3 4 | sylibr | |- ( x e. ( SubRing ` O ) -> R e. Ring ) |
| 6 | 1 | opprsubg | |- ( SubGrp ` R ) = ( SubGrp ` O ) |
| 7 | 6 | a1i | |- ( R e. Ring -> ( SubGrp ` R ) = ( SubGrp ` O ) ) |
| 8 | 7 | eleq2d | |- ( R e. Ring -> ( x e. ( SubGrp ` R ) <-> x e. ( SubGrp ` O ) ) ) |
| 9 | ralcom | |- ( A. y e. x A. z e. x ( y ( .r ` R ) z ) e. x <-> A. z e. x A. y e. x ( y ( .r ` R ) z ) e. x ) |
|
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 12 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 13 | 10 11 1 12 | opprmul | |- ( z ( .r ` O ) y ) = ( y ( .r ` R ) z ) |
| 14 | 13 | eleq1i | |- ( ( z ( .r ` O ) y ) e. x <-> ( y ( .r ` R ) z ) e. x ) |
| 15 | 14 | 2ralbii | |- ( A. z e. x A. y e. x ( z ( .r ` O ) y ) e. x <-> A. z e. x A. y e. x ( y ( .r ` R ) z ) e. x ) |
| 16 | 9 15 | bitr4i | |- ( A. y e. x A. z e. x ( y ( .r ` R ) z ) e. x <-> A. z e. x A. y e. x ( z ( .r ` O ) y ) e. x ) |
| 17 | 16 | a1i | |- ( R e. Ring -> ( A. y e. x A. z e. x ( y ( .r ` R ) z ) e. x <-> A. z e. x A. y e. x ( z ( .r ` O ) y ) e. x ) ) |
| 18 | 8 17 | 3anbi13d | |- ( R e. Ring -> ( ( x e. ( SubGrp ` R ) /\ ( 1r ` R ) e. x /\ A. y e. x A. z e. x ( y ( .r ` R ) z ) e. x ) <-> ( x e. ( SubGrp ` O ) /\ ( 1r ` R ) e. x /\ A. z e. x A. y e. x ( z ( .r ` O ) y ) e. x ) ) ) |
| 19 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 20 | 10 19 11 | issubrg2 | |- ( R e. Ring -> ( x e. ( SubRing ` R ) <-> ( x e. ( SubGrp ` R ) /\ ( 1r ` R ) e. x /\ A. y e. x A. z e. x ( y ( .r ` R ) z ) e. x ) ) ) |
| 21 | 1 10 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 22 | 1 19 | oppr1 | |- ( 1r ` R ) = ( 1r ` O ) |
| 23 | 21 22 12 | issubrg2 | |- ( O e. Ring -> ( x e. ( SubRing ` O ) <-> ( x e. ( SubGrp ` O ) /\ ( 1r ` R ) e. x /\ A. z e. x A. y e. x ( z ( .r ` O ) y ) e. x ) ) ) |
| 24 | 4 23 | sylbi | |- ( R e. Ring -> ( x e. ( SubRing ` O ) <-> ( x e. ( SubGrp ` O ) /\ ( 1r ` R ) e. x /\ A. z e. x A. y e. x ( z ( .r ` O ) y ) e. x ) ) ) |
| 25 | 18 20 24 | 3bitr4d | |- ( R e. Ring -> ( x e. ( SubRing ` R ) <-> x e. ( SubRing ` O ) ) ) |
| 26 | 2 5 25 | pm5.21nii | |- ( x e. ( SubRing ` R ) <-> x e. ( SubRing ` O ) ) |
| 27 | 26 | eqriv | |- ( SubRing ` R ) = ( SubRing ` O ) |