This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of ordinals dominated by a given set is an ordinal. Theorem 56 of Suppes p. 227. This theorem can be proved without the axiom of choice, see hartogs . (Contributed by NM, 7-Nov-2003) (Proof modification is discouraged.) Use hartogs instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ondomon | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ On ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | onelss | ⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ) ) | |
| 4 | 3 | imp | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ⊆ 𝑧 ) |
| 5 | ssdomg | ⊢ ( 𝑧 ∈ V → ( 𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧 ) ) | |
| 6 | 2 4 5 | mpsyl | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ≼ 𝑧 ) |
| 7 | 1 6 | jca | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ) |
| 8 | domtr | ⊢ ( ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) → 𝑦 ≼ 𝐴 ) | |
| 9 | 8 | anim2i | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 11 | 7 10 | sylan | ⊢ ( ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 12 | 11 | exp31 | ⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
| 13 | 12 | com12 | ⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ On → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
| 14 | 13 | impd | ⊢ ( 𝑦 ∈ 𝑧 → ( ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) |
| 15 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≼ 𝐴 ↔ 𝑧 ≼ 𝐴 ) ) | |
| 16 | 15 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) ) |
| 17 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴 ) ) | |
| 18 | 17 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
| 19 | 14 16 18 | 3imtr4g | ⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
| 21 | 20 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
| 22 | dftr2 | ⊢ ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) | |
| 23 | 21 22 | mpbir | ⊢ Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
| 24 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On | |
| 25 | ordon | ⊢ Ord On | |
| 26 | trssord | ⊢ ( ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On ∧ Ord On ) → Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) | |
| 27 | 23 24 25 26 | mp3an | ⊢ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
| 28 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 29 | numth3 | ⊢ ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ dom card ) | |
| 30 | cardval2 | ⊢ ( 𝒫 𝐴 ∈ dom card → ( card ‘ 𝒫 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ) | |
| 31 | 28 29 30 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ 𝒫 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ) |
| 32 | fvex | ⊢ ( card ‘ 𝒫 𝐴 ) ∈ V | |
| 33 | 31 32 | eqeltrrdi | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ∈ V ) |
| 34 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 35 | canth2g | ⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) | |
| 36 | domsdomtr | ⊢ ( ( 𝑥 ≼ 𝐴 ∧ 𝐴 ≺ 𝒫 𝐴 ) → 𝑥 ≺ 𝒫 𝐴 ) | |
| 37 | 35 36 | sylan2 | ⊢ ( ( 𝑥 ≼ 𝐴 ∧ 𝐴 ∈ V ) → 𝑥 ≺ 𝒫 𝐴 ) |
| 38 | 37 | expcom | ⊢ ( 𝐴 ∈ V → ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
| 39 | 38 | ralrimivw | ⊢ ( 𝐴 ∈ V → ∀ 𝑥 ∈ On ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
| 40 | 34 39 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ On ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
| 41 | 40 | ss2rabd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ) |
| 42 | 33 41 | ssexd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |
| 43 | elong | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
| 45 | 27 44 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) |