This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of a restricted class abstraction (deduction form). Saves ax-10 , ax-11 , ax-12 over using ss2rab and sylibr . (Contributed by SN, 4-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabd.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) | |
| Assertion | ss2rabd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabd.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | |
| 3 | imdistan | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 5 | 2 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 6 | 1 5 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 7 | ss2abim | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ) |
| 9 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
| 10 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } | |
| 11 | 8 9 10 | 3sstr4g | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |