This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way of defining a transitive class. Exercise 7 of TakeutiZaring p. 40. Using dftr2c instead may avoid dependences on ax-11 . (Contributed by NM, 24-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftr2 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( ∪ 𝐴 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ) | |
| 2 | df-tr | ⊢ ( Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴 ) | |
| 3 | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) | |
| 4 | eluni | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| 6 | 3 5 | bitr4i | ⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 8 | 1 2 7 | 3bitr4i | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |