This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardmin | ⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numthcor | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) | |
| 2 | onintrab2 | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) |
| 4 | onelon | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ∈ On ) | |
| 5 | 4 | ex | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ∈ On ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ∈ On ) ) |
| 7 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦 ) ) | |
| 8 | 7 | onnminsb | ⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ¬ 𝐴 ≺ 𝑦 ) ) |
| 9 | 6 8 | syli | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ¬ 𝐴 ≺ 𝑦 ) ) |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | domtri | ⊢ ( ( 𝑦 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦 ) ) | |
| 12 | 10 11 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦 ) ) |
| 13 | 9 12 | sylibrd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ≼ 𝐴 ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 15 | nfcv | ⊢ Ⅎ 𝑥 ≺ | |
| 16 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } | |
| 17 | 16 | nfint | ⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 18 | 14 15 17 | nfbr | ⊢ Ⅎ 𝑥 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 19 | breq2 | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) | |
| 20 | 18 19 | onminsb | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 21 | 1 20 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 22 | 13 21 | jctird | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) ) |
| 23 | domsdomtr | ⊢ ( ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) | |
| 24 | 22 23 | syl6 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 25 | 24 | ralrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 26 | iscard | ⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) | |
| 27 | 3 25 26 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |