This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal multiplication. Proposition 8.19 of TakeutiZaring p. 63. Theorem 3.16 of Schloeder p. 9. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omord2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) | |
| 2 | 1 | ex | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 3 | 2 | pm5.32rd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ) ) |
| 4 | simpl | ⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) | |
| 5 | ne0i | ⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐶 ·o 𝐵 ) ≠ ∅ ) | |
| 6 | om0r | ⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) | |
| 7 | oveq1 | ⊢ ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝐶 = ∅ → ( ( 𝐶 ·o 𝐵 ) = ∅ ↔ ( ∅ ·o 𝐵 ) = ∅ ) ) |
| 9 | 6 8 | syl5ibrcom | ⊢ ( 𝐵 ∈ On → ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ∅ ) ) |
| 10 | 9 | necon3d | ⊢ ( 𝐵 ∈ On → ( ( 𝐶 ·o 𝐵 ) ≠ ∅ → 𝐶 ≠ ∅ ) ) |
| 11 | 5 10 | syl5 | ⊢ ( 𝐵 ∈ On → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
| 13 | on0eln0 | ⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 15 | 12 14 | sylibrd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
| 17 | 16 | ancld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ) ) |
| 18 | 4 17 | impbid2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 19 | 3 18 | bitrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |