This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weisoeq | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | isocnv | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 3 | isotr | ⊢ ( ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) → ( ◡ 𝐹 ∘ 𝐺 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → ( ◡ 𝐹 ∘ 𝐺 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) |
| 5 | weniso | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ( ◡ 𝐹 ∘ 𝐺 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) | |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) |
| 7 | 4 6 | sylan2 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) |
| 8 | simprl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 9 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 10 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 12 | simprr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 13 | isof1o | ⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 14 | f1of1 | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐺 : 𝐴 –1-1→ 𝐵 ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐺 : 𝐴 –1-1→ 𝐵 ) |
| 16 | f1eqcocnv | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) | |
| 17 | 11 15 16 | syl2anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝐹 = 𝐺 ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 18 | 7 17 | mpbird | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 ) |