This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | |- F = OrdIso ( R , A ) |
|
| Assertion | oieu | |- ( ( R We A /\ R Se A ) -> ( ( Ord B /\ G Isom _E , R ( B , A ) ) <-> ( B = dom F /\ G = F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | |- F = OrdIso ( R , A ) |
|
| 2 | simprr | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> G Isom _E , R ( B , A ) ) |
|
| 3 | 1 | ordtype | |- ( ( R We A /\ R Se A ) -> F Isom _E , R ( dom F , A ) ) |
| 4 | 3 | adantr | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> F Isom _E , R ( dom F , A ) ) |
| 5 | isocnv | |- ( F Isom _E , R ( dom F , A ) -> `' F Isom R , _E ( A , dom F ) ) |
|
| 6 | 4 5 | syl | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> `' F Isom R , _E ( A , dom F ) ) |
| 7 | isotr | |- ( ( G Isom _E , R ( B , A ) /\ `' F Isom R , _E ( A , dom F ) ) -> ( `' F o. G ) Isom _E , _E ( B , dom F ) ) |
|
| 8 | 2 6 7 | syl2anc | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> ( `' F o. G ) Isom _E , _E ( B , dom F ) ) |
| 9 | simprl | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> Ord B ) |
|
| 10 | 1 | oicl | |- Ord dom F |
| 11 | 10 | a1i | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> Ord dom F ) |
| 12 | ordiso2 | |- ( ( ( `' F o. G ) Isom _E , _E ( B , dom F ) /\ Ord B /\ Ord dom F ) -> B = dom F ) |
|
| 13 | 8 9 11 12 | syl3anc | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> B = dom F ) |
| 14 | ordwe | |- ( Ord B -> _E We B ) |
|
| 15 | 14 | ad2antrl | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> _E We B ) |
| 16 | epse | |- _E Se B |
|
| 17 | 16 | a1i | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> _E Se B ) |
| 18 | isoeq4 | |- ( B = dom F -> ( F Isom _E , R ( B , A ) <-> F Isom _E , R ( dom F , A ) ) ) |
|
| 19 | 13 18 | syl | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> ( F Isom _E , R ( B , A ) <-> F Isom _E , R ( dom F , A ) ) ) |
| 20 | 4 19 | mpbird | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> F Isom _E , R ( B , A ) ) |
| 21 | weisoeq | |- ( ( ( _E We B /\ _E Se B ) /\ ( G Isom _E , R ( B , A ) /\ F Isom _E , R ( B , A ) ) ) -> G = F ) |
|
| 22 | 15 17 2 20 21 | syl22anc | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> G = F ) |
| 23 | 13 22 | jca | |- ( ( ( R We A /\ R Se A ) /\ ( Ord B /\ G Isom _E , R ( B , A ) ) ) -> ( B = dom F /\ G = F ) ) |
| 24 | 23 | ex | |- ( ( R We A /\ R Se A ) -> ( ( Ord B /\ G Isom _E , R ( B , A ) ) -> ( B = dom F /\ G = F ) ) ) |
| 25 | 3 10 | jctil | |- ( ( R We A /\ R Se A ) -> ( Ord dom F /\ F Isom _E , R ( dom F , A ) ) ) |
| 26 | ordeq | |- ( B = dom F -> ( Ord B <-> Ord dom F ) ) |
|
| 27 | 26 | adantr | |- ( ( B = dom F /\ G = F ) -> ( Ord B <-> Ord dom F ) ) |
| 28 | isoeq4 | |- ( B = dom F -> ( G Isom _E , R ( B , A ) <-> G Isom _E , R ( dom F , A ) ) ) |
|
| 29 | isoeq1 | |- ( G = F -> ( G Isom _E , R ( dom F , A ) <-> F Isom _E , R ( dom F , A ) ) ) |
|
| 30 | 28 29 | sylan9bb | |- ( ( B = dom F /\ G = F ) -> ( G Isom _E , R ( B , A ) <-> F Isom _E , R ( dom F , A ) ) ) |
| 31 | 27 30 | anbi12d | |- ( ( B = dom F /\ G = F ) -> ( ( Ord B /\ G Isom _E , R ( B , A ) ) <-> ( Ord dom F /\ F Isom _E , R ( dom F , A ) ) ) ) |
| 32 | 25 31 | syl5ibrcom | |- ( ( R We A /\ R Se A ) -> ( ( B = dom F /\ G = F ) -> ( Ord B /\ G Isom _E , R ( B , A ) ) ) ) |
| 33 | 24 32 | impbid | |- ( ( R We A /\ R Se A ) -> ( ( Ord B /\ G Isom _E , R ( B , A ) ) <-> ( B = dom F /\ G = F ) ) ) |