This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize ordiso to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordiso2 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 ⊆ On ) |
| 3 | 2 | sseld | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) ) |
| 4 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 6 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
| 8 | 4 7 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ↔ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ) ) |
| 10 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ↔ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ) | |
| 11 | ordelss | ⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝐴 ) | |
| 12 | 11 | 3ad2antl2 | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
| 13 | 12 | sselda | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 14 | pm5.5 | ⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
| 16 | 15 | ralbidva | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
| 17 | isof1o | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 20 | simpll3 | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → Ord 𝐵 ) | |
| 21 | simpr | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) | |
| 22 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 23 | 17 22 | syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 26 | simplrl | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) | |
| 27 | 25 26 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 28 | 21 27 | jca | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 29 | ordtr1 | ⊢ ( Ord 𝐵 → ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) ) | |
| 30 | 20 28 29 | sylc | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑧 ∈ 𝐵 ) |
| 31 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) | |
| 32 | 19 30 31 | syl2anc | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 33 | 32 21 | eqeltrd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 34 | simpll1 | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) | |
| 35 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 36 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 37 | 19 35 36 | 3syl | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 38 | 37 30 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) |
| 39 | isorel | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) E 𝑥 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) E ( 𝐹 ‘ 𝑥 ) ) ) | |
| 40 | 34 38 26 39 | syl12anc | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) E 𝑥 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) E ( 𝐹 ‘ 𝑥 ) ) ) |
| 41 | epel | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) E 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) | |
| 42 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 43 | 42 | epeli | ⊢ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) E ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 44 | 40 41 43 | 3bitr3g | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 33 44 | mpbird | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 46 | simplrr | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) | |
| 47 | fveq2 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 48 | id | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) ) | |
| 49 | 47 48 | eqeq12d | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑦 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 50 | 49 | rspcv | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 51 | 45 46 50 | sylc | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 52 | 32 51 | eqtr3d | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑧 = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 53 | 52 45 | eqeltrd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
| 54 | simprr | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) | |
| 55 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 56 | id | ⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) | |
| 57 | 55 56 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) |
| 58 | 57 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ∧ 𝑧 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 59 | 54 58 | sylan | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 60 | epel | ⊢ ( 𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥 ) | |
| 61 | 60 | biimpri | ⊢ ( 𝑧 ∈ 𝑥 → 𝑧 E 𝑥 ) |
| 62 | 61 | adantl | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 E 𝑥 ) |
| 63 | simpll1 | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) | |
| 64 | simpl2 | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → Ord 𝐴 ) | |
| 65 | simprl | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ 𝐴 ) | |
| 66 | 64 65 11 | syl2anc | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ⊆ 𝐴 ) |
| 67 | 66 | sselda | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝐴 ) |
| 68 | simplrl | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ 𝐴 ) | |
| 69 | isorel | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑧 E 𝑥 ↔ ( 𝐹 ‘ 𝑧 ) E ( 𝐹 ‘ 𝑥 ) ) ) | |
| 70 | 63 67 68 69 | syl12anc | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑧 E 𝑥 ↔ ( 𝐹 ‘ 𝑧 ) E ( 𝐹 ‘ 𝑥 ) ) ) |
| 71 | 62 70 | mpbid | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) E ( 𝐹 ‘ 𝑥 ) ) |
| 72 | 42 | epeli | ⊢ ( ( 𝐹 ‘ 𝑧 ) E ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 73 | 71 72 | sylib | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 74 | 59 73 | eqeltrrd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 75 | 53 74 | impbida | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑧 ∈ 𝑥 ) ) |
| 76 | 75 | eqrdv | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 77 | 76 | expr | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 78 | 16 77 | sylbid | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 79 | 78 | ex | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 80 | 79 | com23 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 81 | 80 | a2i | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 82 | 81 | a1i | ⊢ ( 𝑥 ∈ On → ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |
| 83 | 10 82 | biimtrid | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑦 ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |
| 84 | 9 83 | tfis2 | ⊢ ( 𝑥 ∈ On → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 85 | 84 | com3l | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 86 | 3 85 | mpdd | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 87 | 86 | ralrimiv | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 88 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 89 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 90 | 88 89 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) |
| 91 | 90 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 92 | 91 | adantll | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 93 | 23 | ffvelcdmda | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 94 | 93 | 3ad2antl1 | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 95 | 94 | adantlr | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 96 | 92 95 | eqeltrrd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 97 | 96 | ex | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵 ) ) |
| 98 | simpl1 | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) | |
| 99 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 100 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 101 | 17 99 100 | 3syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ran 𝐹 = 𝐵 ) |
| 102 | 98 101 | syl | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ran 𝐹 = 𝐵 ) |
| 103 | 102 | eleq2d | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑧 ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐵 ) ) |
| 104 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 105 | 17 104 | syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 106 | 105 | 3ad2ant1 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → 𝐹 Fn 𝐴 ) |
| 108 | fvelrnb | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) | |
| 109 | 107 108 | syl | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 110 | 103 109 | bitr3d | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑧 ∈ 𝐵 ↔ ∃ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 111 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 112 | id | ⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) | |
| 113 | 111 112 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑤 ) = 𝑤 ) ) |
| 114 | 113 | rspcv | ⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ 𝑤 ) = 𝑤 ) ) |
| 115 | 114 | a1i | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ 𝑤 ) = 𝑤 ) ) ) |
| 116 | simpr | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) = 𝑤 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝐹 ‘ 𝑤 ) = 𝑧 ) | |
| 117 | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) = 𝑤 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝐹 ‘ 𝑤 ) = 𝑤 ) | |
| 118 | 116 117 | eqtr3d | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) = 𝑤 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → 𝑧 = 𝑤 ) |
| 119 | 118 | adantl | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) = 𝑤 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) → 𝑧 = 𝑤 ) |
| 120 | simplr | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) = 𝑤 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) → 𝑤 ∈ 𝐴 ) | |
| 121 | 119 120 | eqeltrd | ⊢ ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) = 𝑤 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) → 𝑧 ∈ 𝐴 ) |
| 122 | 121 | exp43 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑤 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑤 ) = 𝑤 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐴 ) ) ) ) |
| 123 | 115 122 | syldd | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐴 ) ) ) ) |
| 124 | 123 | com23 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝑤 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐴 ) ) ) ) |
| 125 | 124 | imp | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑤 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐴 ) ) ) |
| 126 | 125 | rexlimdv | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( ∃ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐴 ) ) |
| 127 | 110 126 | sylbid | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐴 ) ) |
| 128 | 97 127 | impbid | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 129 | 128 | eqrdv | ⊢ ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → 𝐴 = 𝐵 ) |
| 130 | 87 129 | mpdan | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 = 𝐵 ) |