This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mod2eq0even | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 0 ↔ 2 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | ⊢ 2 ∈ ℕ | |
| 2 | dvdsval3 | ⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ( 𝑁 mod 2 ) = 0 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 mod 2 ) = 0 ) ) |
| 4 | 3 | bicomd | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 0 ↔ 2 ∥ 𝑁 ) ) |