This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 27-May-2016) (Revised by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodge0rd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| prodge0rd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| prodge0rd.3 | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) | ||
| Assertion | prodge0rd | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodge0rd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | prodge0rd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | prodge0rd.3 | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 4 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 5 | 1 | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 | 5 2 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 7 | 4 6 3 | lensymd | ⊢ ( 𝜑 → ¬ ( 𝐴 · 𝐵 ) < 0 ) |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 𝐴 ∈ ℝ ) |
| 9 | 2 | renegcld | ⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → - 𝐵 ∈ ℝ ) |
| 11 | 1 | rpgt0d | ⊢ ( 𝜑 → 0 < 𝐴 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < 𝐴 ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < - 𝐵 ) | |
| 14 | 8 10 12 13 | mulgt0d | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < ( 𝐴 · - 𝐵 ) ) |
| 15 | 5 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 𝐴 ∈ ℂ ) |
| 17 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 𝐵 ∈ ℂ ) |
| 19 | 16 18 | mulneg2d | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| 20 | 14 19 | breqtrd | ⊢ ( ( 𝜑 ∧ 0 < - 𝐵 ) → 0 < - ( 𝐴 · 𝐵 ) ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( 0 < - 𝐵 → 0 < - ( 𝐴 · 𝐵 ) ) ) |
| 22 | 2 | lt0neg1d | ⊢ ( 𝜑 → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
| 23 | 6 | lt0neg1d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ 0 < - ( 𝐴 · 𝐵 ) ) ) |
| 24 | 21 22 23 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐵 < 0 → ( 𝐴 · 𝐵 ) < 0 ) ) |
| 25 | 7 24 | mtod | ⊢ ( 𝜑 → ¬ 𝐵 < 0 ) |
| 26 | 4 2 25 | nltled | ⊢ ( 𝜑 → 0 ≤ 𝐵 ) |