This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the function value for a given argument is not empty, the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 2-Jul-2019) (Revised by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvn0elsupp | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 2 | simpr | ⊢ ( ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) → ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
| 4 | simprl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → 𝐺 Fn 𝐵 ) | |
| 5 | simpll | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → 𝐵 ∈ 𝑉 ) | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | a1i | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → ∅ ∈ V ) |
| 8 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) | |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 10 | 3 9 | mpbird | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |