This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the relation T . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| Assertion | oemapval | ⊢ ( 𝜑 → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 7 | fveq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 8 | fveq1 | ⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 9 | eleq12 | ⊢ ( ( ( 𝑥 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
| 11 | fveq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 12 | fveq1 | ⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 13 | 11 12 | eqeqan12d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 15 | 14 | ralbidv | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 16 | 10 15 | anbi12d | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 18 | 17 4 | brabga | ⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 19 | 5 6 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |