This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dflim4 | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim2 | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) | |
| 2 | ordunisuc2 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) | |
| 3 | 2 | anbi2d | ⊢ ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) ) |
| 4 | 3 | pm5.32i | ⊢ ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) ) |
| 5 | 3anass | ⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) ) | |
| 6 | 3anass | ⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
| 8 | 1 7 | bitri | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |