This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| ocvlss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | ocvlss | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | ocvlss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 4 | 1 2 | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 5 | 4 | a1i | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 6 | simpr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) | |
| 7 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
| 9 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 10 | 1 9 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 12 | simpll | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑊 ∈ PreHil ) | |
| 13 | 6 | sselda | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑉 ) |
| 14 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 15 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 16 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 17 | 14 15 1 16 9 | ip0l | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ) → ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 18 | 12 13 17 | syl2anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 | 18 | ralrimiva | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 | 1 15 14 16 2 | elocv | ⊢ ( ( 0g ‘ 𝑊 ) ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 21 | 6 11 19 20 | syl3anbrc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 0g ‘ 𝑊 ) ∈ ( ⊥ ‘ 𝑆 ) ) |
| 22 | 21 | ne0d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ≠ ∅ ) |
| 23 | 6 | adantr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑆 ⊆ 𝑉 ) |
| 24 | 8 | adantr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑊 ∈ LMod ) |
| 25 | simpr1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 26 | simpr2 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ) | |
| 27 | 4 26 | sselid | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝑉 ) |
| 28 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 29 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 30 | 1 14 28 29 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 31 | 24 25 27 30 | syl3anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 32 | simpr3 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) | |
| 33 | 4 32 | sselid | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑧 ∈ 𝑉 ) |
| 34 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 35 | 1 34 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 36 | 24 31 33 35 | syl3anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 37 | 12 | adantlr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑊 ∈ PreHil ) |
| 38 | 31 | adantr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 39 | 33 | adantr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑧 ∈ 𝑉 ) |
| 40 | 13 | adantlr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑉 ) |
| 41 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 42 | 14 15 1 34 41 | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 43 | 37 38 39 40 42 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 44 | 25 | adantr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 45 | 27 | adantr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑦 ∈ 𝑉 ) |
| 46 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 47 | 14 15 1 29 28 46 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 48 | 37 44 45 40 47 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 49 | 1 15 14 16 2 | ocvi | ⊢ ( ( 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 50 | 26 49 | sylan | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) = ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 52 | 24 | adantr | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
| 53 | 14 | lmodring | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 54 | 52 53 | syl | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 55 | 29 46 16 | ringrz | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Ring ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 56 | 54 44 55 | syl2anc | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 57 | 48 51 56 | 3eqtrd | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 58 | 1 15 14 16 2 | ocvi | ⊢ ( ( 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 59 | 32 58 | sylan | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 60 | 57 59 | oveq12d | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 61 | 14 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 62 | 29 16 | grpidcl | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Grp → ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 63 | 29 41 16 | grplid | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 64 | 62 63 | mpdan | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Grp → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 65 | 52 61 64 | 3syl | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 66 | 43 60 65 | 3eqtrd | ⊢ ( ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 68 | 1 15 14 16 2 | elocv | ⊢ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 69 | 23 36 67 68 | syl3anbrc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ 𝑆 ) ) |
| 70 | 69 | ralrimivvva | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∀ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ 𝑆 ) ) |
| 71 | 14 29 1 34 28 3 | islss | ⊢ ( ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ↔ ( ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ∧ ( ⊥ ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝑆 ) ∀ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ 𝑆 ) ) ) |
| 72 | 5 22 70 71 | syl3anbrc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) |