This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssset.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lssset.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| lssset.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lssset.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lssset.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lssset.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | islss | ⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lssset.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | lssset.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lssset.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 5 | lssset.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lssset.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 7 | elfvex | ⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑊 ∈ V ) | |
| 8 | 7 6 | eleq2s | ⊢ ( 𝑈 ∈ 𝑆 → 𝑊 ∈ V ) |
| 9 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) | |
| 10 | 3 9 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝑉 = ∅ ) |
| 11 | 10 | sseq2d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ⊆ 𝑉 ↔ 𝑈 ⊆ ∅ ) ) |
| 12 | 11 | biimpcd | ⊢ ( 𝑈 ⊆ 𝑉 → ( ¬ 𝑊 ∈ V → 𝑈 ⊆ ∅ ) ) |
| 13 | ss0 | ⊢ ( 𝑈 ⊆ ∅ → 𝑈 = ∅ ) | |
| 14 | 12 13 | syl6 | ⊢ ( 𝑈 ⊆ 𝑉 → ( ¬ 𝑊 ∈ V → 𝑈 = ∅ ) ) |
| 15 | 14 | necon1ad | ⊢ ( 𝑈 ⊆ 𝑉 → ( 𝑈 ≠ ∅ → 𝑊 ∈ V ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) → 𝑊 ∈ V ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) → 𝑊 ∈ V ) |
| 18 | 1 2 3 4 5 6 | lssset | ⊢ ( 𝑊 ∈ V → 𝑆 = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
| 19 | 18 | eleq2d | ⊢ ( 𝑊 ∈ V → ( 𝑈 ∈ 𝑆 ↔ 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) ) |
| 20 | eldifsn | ⊢ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑈 ∈ 𝒫 𝑉 ∧ 𝑈 ≠ ∅ ) ) | |
| 21 | 3 | fvexi | ⊢ 𝑉 ∈ V |
| 22 | 21 | elpw2 | ⊢ ( 𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉 ) |
| 23 | 22 | anbi1i | ⊢ ( ( 𝑈 ∈ 𝒫 𝑉 ∧ 𝑈 ≠ ∅ ) ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
| 24 | 20 23 | bitri | ⊢ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
| 25 | 24 | anbi1i | ⊢ ( ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ↔ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 26 | eleq2 | ⊢ ( 𝑠 = 𝑈 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) | |
| 27 | 26 | raleqbi1dv | ⊢ ( 𝑠 = 𝑈 → ( ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 28 | 27 | raleqbi1dv | ⊢ ( 𝑠 = 𝑈 → ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 29 | 28 | ralbidv | ⊢ ( 𝑠 = 𝑈 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 30 | 29 | elrab | ⊢ ( 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ↔ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 31 | df-3an | ⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ↔ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) | |
| 32 | 25 30 31 | 3bitr4i | ⊢ ( 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
| 33 | 19 32 | bitrdi | ⊢ ( 𝑊 ∈ V → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) ) |
| 34 | 8 17 33 | pm5.21nii | ⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |