This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | ||
| ip0l.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ip0l | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 0 , 𝐴 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | |
| 5 | ip0l.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 6 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 7 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 8 | 3 5 | grpidcl | ⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝑉 ) |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝑊 ∈ PreHil → 0 ∈ 𝑉 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 11 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 , 𝐴 ) = ( 0 , 𝐴 ) ) | |
| 12 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) | |
| 13 | ovex | ⊢ ( 0 , 𝐴 ) ∈ V | |
| 14 | 11 12 13 | fvmpt | ⊢ ( 0 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ‘ 0 ) = ( 0 , 𝐴 ) ) |
| 15 | 10 14 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ‘ 0 ) = ( 0 , 𝐴 ) ) |
| 16 | 1 2 3 12 | phllmhm | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 17 | lmghm | ⊢ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ) | |
| 18 | rlm0 | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ringLMod ‘ 𝐹 ) ) | |
| 19 | 4 18 | eqtri | ⊢ 𝑍 = ( 0g ‘ ( ringLMod ‘ 𝐹 ) ) |
| 20 | 5 19 | ghmid | ⊢ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ‘ 0 ) = 𝑍 ) |
| 21 | 16 17 20 | 3syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ‘ 0 ) = 𝑍 ) |
| 22 | 15 21 | eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 0 , 𝐴 ) = 𝑍 ) |