This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a group norm generates a metric. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nrmmetd.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nrmmetd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| nrmmetd.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| nrmmetd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| nrmmetd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) | ||
| nrmmetd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | ||
| nrmmetd.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | nrmmetd | ⊢ ( 𝜑 → ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmmetd.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nrmmetd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | nrmmetd.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | nrmmetd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 5 | nrmmetd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) | |
| 6 | nrmmetd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 7 | nrmmetd.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) | |
| 8 | 1 2 | grpsubf | ⊢ ( 𝐺 ∈ Grp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 10 | fco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 11 | 5 9 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 12 | opelxpi | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 13 | fvco3 | ⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ) ) | |
| 14 | 9 12 13 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
| 15 | df-ov | ⊢ ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = ( ( 𝐹 ∘ − ) ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 16 | df-ov | ⊢ ( 𝑎 − 𝑏 ) = ( − ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 17 | 16 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = ( 𝐹 ‘ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ) |
| 18 | 14 15 17 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ) ) |
| 20 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 21 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
| 22 | 21 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
| 23 | 4 22 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
| 24 | fveq2 | ⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ) ) |
| 26 | eqeq1 | ⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( 𝑥 = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) | |
| 27 | 25 26 | bibi12d | ⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) ) |
| 28 | 27 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑎 − 𝑏 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) |
| 29 | 20 23 28 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) |
| 30 | 1 3 2 | grpsubeq0 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝑎 − 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 31 | 30 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 32 | 4 31 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 33 | 19 29 32 | 3bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 34 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 35 | 23 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
| 36 | 34 35 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ∈ ℝ ) |
| 37 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 38 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 39 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) | |
| 40 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑎 − 𝑐 ) ∈ 𝑋 ) |
| 41 | 37 38 39 40 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 − 𝑐 ) ∈ 𝑋 ) |
| 42 | 34 41 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ∈ ℝ ) |
| 43 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 44 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑏 − 𝑐 ) ∈ 𝑋 ) |
| 45 | 37 43 39 44 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 − 𝑐 ) ∈ 𝑋 ) |
| 46 | 34 45 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ∈ ℝ ) |
| 47 | 42 46 | readdcld | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ∈ ℝ ) |
| 48 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑐 − 𝑎 ) ∈ 𝑋 ) |
| 49 | 37 39 38 48 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 − 𝑎 ) ∈ 𝑋 ) |
| 50 | 34 49 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ∈ ℝ ) |
| 51 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑐 − 𝑏 ) ∈ 𝑋 ) |
| 52 | 37 39 43 51 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 − 𝑏 ) ∈ 𝑋 ) |
| 53 | 34 52 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ∈ ℝ ) |
| 54 | 50 53 | readdcld | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ∈ ℝ ) |
| 55 | 1 2 | grpnnncan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) = ( 𝑎 − 𝑏 ) ) |
| 56 | 37 38 43 39 55 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) = ( 𝑎 − 𝑏 ) ) |
| 57 | 56 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
| 58 | 7 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 60 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) ) | |
| 61 | fveq2 | ⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ) | |
| 62 | 61 | oveq1d | ⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 | 60 62 | breq12d | ⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 64 | oveq2 | ⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( ( 𝑎 − 𝑐 ) − 𝑦 ) = ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) | |
| 65 | 64 | fveq2d | ⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ) |
| 66 | fveq2 | ⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) | |
| 67 | 66 | oveq2d | ⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 68 | 65 67 | breq12d | ⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) ) |
| 69 | 63 68 | rspc2va | ⊢ ( ( ( ( 𝑎 − 𝑐 ) ∈ 𝑋 ∧ ( 𝑏 − 𝑐 ) ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 70 | 41 45 59 69 | syl21anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 71 | 57 70 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 72 | eleq1w | ⊢ ( 𝑏 = 𝑐 → ( 𝑏 ∈ 𝑋 ↔ 𝑐 ∈ 𝑋 ) ) | |
| 73 | 72 | anbi2d | ⊢ ( 𝑏 = 𝑐 → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) |
| 74 | 73 | anbi2d | ⊢ ( 𝑏 = 𝑐 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) ) |
| 75 | oveq2 | ⊢ ( 𝑏 = 𝑐 → ( 𝑎 − 𝑏 ) = ( 𝑎 − 𝑐 ) ) | |
| 76 | 75 | fveq2d | ⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ) |
| 77 | fvoveq1 | ⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) = ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) | |
| 78 | 76 77 | breq12d | ⊢ ( 𝑏 = 𝑐 → ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) ) |
| 79 | 74 78 | imbi12d | ⊢ ( 𝑏 = 𝑐 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) ) ) |
| 80 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 81 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 82 | 80 81 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 0 ∈ 𝑋 ) |
| 83 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 84 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 85 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 − 𝑎 ) ∈ 𝑋 ) |
| 86 | 80 83 84 85 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑏 − 𝑎 ) ∈ 𝑋 ) |
| 87 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 88 | fvoveq1 | ⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝐹 ‘ ( 0 − 𝑦 ) ) ) | |
| 89 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) | |
| 90 | 89 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 91 | 88 90 | breq12d | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 0 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 92 | oveq2 | ⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( 0 − 𝑦 ) = ( 0 − ( 𝑏 − 𝑎 ) ) ) | |
| 93 | 92 | fveq2d | ⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( 𝐹 ‘ ( 0 − 𝑦 ) ) = ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ) |
| 94 | fveq2 | ⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) | |
| 95 | 94 | oveq2d | ⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 96 | 93 95 | breq12d | ⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( ( 𝐹 ‘ ( 0 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 97 | 91 96 | rspc2va | ⊢ ( ( ( 0 ∈ 𝑋 ∧ ( 𝑏 − 𝑎 ) ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 98 | 82 86 87 97 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 99 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 100 | 1 2 99 3 | grpinvval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 − 𝑎 ) ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 0 − ( 𝑏 − 𝑎 ) ) ) |
| 101 | 4 86 100 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 0 − ( 𝑏 − 𝑎 ) ) ) |
| 102 | 1 2 99 | grpinvsub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑎 − 𝑏 ) ) |
| 103 | 80 83 84 102 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑎 − 𝑏 ) ) |
| 104 | 101 103 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 0 − ( 𝑏 − 𝑎 ) ) = ( 𝑎 − 𝑏 ) ) |
| 105 | 104 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
| 106 | 4 81 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑋 ) |
| 107 | pm5.501 | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝑥 = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) | |
| 108 | bicom | ⊢ ( ( 𝑥 = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 109 | 107 108 | bitrdi | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) ) |
| 110 | 89 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 0 ) = 0 ) ) |
| 111 | 109 110 | bitr3d | ⊢ ( 𝑥 = 0 → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( 𝐹 ‘ 0 ) = 0 ) ) |
| 112 | 111 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ 0 ∈ 𝑋 ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 113 | 20 106 112 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 115 | 114 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) = ( 0 + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 116 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 117 | 116 86 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ∈ ℝ ) |
| 118 | 117 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
| 119 | 118 | addlidd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 0 + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
| 120 | 115 119 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
| 121 | 98 105 120 | 3brtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
| 122 | 79 121 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
| 123 | 122 | adantrlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
| 124 | eleq1w | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ 𝑋 ↔ 𝑏 ∈ 𝑋 ) ) | |
| 125 | 124 | anbi1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ↔ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) |
| 126 | 125 | anbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) ) |
| 127 | fvoveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) = ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) | |
| 128 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑐 − 𝑎 ) = ( 𝑐 − 𝑏 ) ) | |
| 129 | 128 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) = ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
| 130 | 127 129 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
| 131 | 126 130 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) ) |
| 132 | 131 122 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
| 133 | 132 | adantrll | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
| 134 | 42 46 50 53 123 133 | le2addd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
| 135 | 36 47 54 71 134 | letrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
| 136 | 18 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
| 137 | opelxpi | ⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 138 | 39 38 137 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 139 | fvco3 | ⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑎 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑎 〉 ) ) ) | |
| 140 | 9 138 139 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑎 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑎 〉 ) ) ) |
| 141 | df-ov | ⊢ ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) = ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑎 〉 ) | |
| 142 | df-ov | ⊢ ( 𝑐 − 𝑎 ) = ( − ‘ 〈 𝑐 , 𝑎 〉 ) | |
| 143 | 142 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑎 〉 ) ) |
| 144 | 140 141 143 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) = ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
| 145 | opelxpi | ⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 146 | 39 43 145 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 147 | fvco3 | ⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑏 〉 ) ) ) | |
| 148 | 9 146 147 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑏 〉 ) ) ) |
| 149 | df-ov | ⊢ ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) = ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑏 〉 ) | |
| 150 | df-ov | ⊢ ( 𝑐 − 𝑏 ) = ( − ‘ 〈 𝑐 , 𝑏 〉 ) | |
| 151 | 150 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑏 〉 ) ) |
| 152 | 148 149 151 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) = ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
| 153 | 144 152 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
| 154 | 135 136 153 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) |
| 155 | 154 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑐 ∈ 𝑋 → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) |
| 156 | 155 | ralrimiv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) |
| 157 | 33 156 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) |
| 158 | 157 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) |
| 159 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 160 | ismet | ⊢ ( 𝑋 ∈ V → ( ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ↔ ( ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) ) ) | |
| 161 | 159 160 | ax-mp | ⊢ ( ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ↔ ( ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) ) |
| 162 | 11 158 161 | sylanbrc | ⊢ ( 𝜑 → ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |