This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| grpinvsub.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvsub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | grpinvsub.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | 1 6 3 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 8 | 5 7 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 9 | 1 3 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 11 | 10 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 12 | 8 11 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 13 | 1 6 3 2 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 16 | 1 6 3 2 | grpsubval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 − 𝑋 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 17 | 16 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 − 𝑋 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 − 𝑋 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 | 12 15 18 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |