This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolute value F generates a metric defined by d ( x , y ) = F ( x - y ) , analogously to cnmet . (In fact, the ring structure is not needed at all; the group properties abveq0 and abvtri , abvneg are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvmet.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| abvmet.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | ||
| abvmet.m | ⊢ − = ( -g ‘ 𝑅 ) | ||
| Assertion | abvmet | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvmet.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2 | abvmet.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 3 | abvmet.m | ⊢ − = ( -g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | 2 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 6 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Grp ) |
| 8 | 2 1 | abvf | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 9 | 2 1 4 | abveq0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ) |
| 10 | 2 1 3 | abvsubtri | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | 1 3 4 7 8 9 11 | nrmmetd | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |