This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nrginvrcn.x | |- X = ( Base ` R ) |
|
| nrginvrcn.u | |- U = ( Unit ` R ) |
||
| nrginvrcn.i | |- I = ( invr ` R ) |
||
| nrginvrcn.j | |- J = ( TopOpen ` R ) |
||
| Assertion | nrginvrcn | |- ( R e. NrmRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrginvrcn.x | |- X = ( Base ` R ) |
|
| 2 | nrginvrcn.u | |- U = ( Unit ` R ) |
|
| 3 | nrginvrcn.i | |- I = ( invr ` R ) |
|
| 4 | nrginvrcn.j | |- J = ( TopOpen ` R ) |
|
| 5 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
| 6 | eqid | |- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
|
| 7 | 2 6 | unitgrp | |- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 8 | 2 6 | unitgrpbas | |- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 9 | 2 6 3 | invrfval | |- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 10 | 8 9 | grpinvf | |- ( ( ( mulGrp ` R ) |`s U ) e. Grp -> I : U --> U ) |
| 11 | 5 7 10 | 3syl | |- ( R e. NrmRing -> I : U --> U ) |
| 12 | 1rp | |- 1 e. RR+ |
|
| 13 | 12 | ne0ii | |- RR+ =/= (/) |
| 14 | 5 | ad2antrr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> R e. Ring ) |
| 15 | 1 2 | unitss | |- U C_ X |
| 16 | simplrl | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> x e. U ) |
|
| 17 | 15 16 | sselid | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> x e. X ) |
| 18 | simpr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> y e. U ) |
|
| 19 | 15 18 | sselid | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> y e. X ) |
| 20 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 21 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 22 | 1 20 21 | ring1eq0 | |- ( ( R e. Ring /\ x e. X /\ y e. X ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) |
| 23 | 14 17 19 22 | syl3anc | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) |
| 24 | eqid | |- ( I ` y ) = ( I ` y ) |
|
| 25 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
| 26 | ngpms | |- ( R e. NrmGrp -> R e. MetSp ) |
|
| 27 | msxms | |- ( R e. MetSp -> R e. *MetSp ) |
|
| 28 | 25 26 27 | 3syl | |- ( R e. NrmRing -> R e. *MetSp ) |
| 29 | 28 | ad2antrr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> R e. *MetSp ) |
| 30 | 11 | adantr | |- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> I : U --> U ) |
| 31 | 30 | ffvelcdmda | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( I ` y ) e. U ) |
| 32 | 15 31 | sselid | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( I ` y ) e. X ) |
| 33 | eqid | |- ( dist ` R ) = ( dist ` R ) |
|
| 34 | 1 33 | xmseq0 | |- ( ( R e. *MetSp /\ ( I ` y ) e. X /\ ( I ` y ) e. X ) -> ( ( ( I ` y ) ( dist ` R ) ( I ` y ) ) = 0 <-> ( I ` y ) = ( I ` y ) ) ) |
| 35 | 29 32 32 34 | syl3anc | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( ( I ` y ) ( dist ` R ) ( I ` y ) ) = 0 <-> ( I ` y ) = ( I ` y ) ) ) |
| 36 | 24 35 | mpbiri | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( I ` y ) ( dist ` R ) ( I ` y ) ) = 0 ) |
| 37 | simplrr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> r e. RR+ ) |
|
| 38 | 37 | rpgt0d | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> 0 < r ) |
| 39 | 36 38 | eqbrtrd | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( I ` y ) ( dist ` R ) ( I ` y ) ) < r ) |
| 40 | fveq2 | |- ( x = y -> ( I ` x ) = ( I ` y ) ) |
|
| 41 | 40 | oveq1d | |- ( x = y -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) = ( ( I ` y ) ( dist ` R ) ( I ` y ) ) ) |
| 42 | 41 | breq1d | |- ( x = y -> ( ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r <-> ( ( I ` y ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 43 | 39 42 | syl5ibrcom | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( x = y -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 44 | 23 43 | syld | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( 1r ` R ) = ( 0g ` R ) -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 45 | 44 | imp | |- ( ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) |
| 46 | 45 | an32s | |- ( ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) /\ y e. U ) -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) |
| 47 | 46 | a1d | |- ( ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) /\ y e. U ) -> ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 48 | 47 | ralrimiva | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 49 | 48 | ralrimivw | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> A. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 50 | r19.2z | |- ( ( RR+ =/= (/) /\ A. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
|
| 51 | 13 49 50 | sylancr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 52 | eqid | |- ( norm ` R ) = ( norm ` R ) |
|
| 53 | simpll | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> R e. NrmRing ) |
|
| 54 | 5 | ad2antrr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> R e. Ring ) |
| 55 | simpr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
|
| 56 | 20 21 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 57 | 54 55 56 | sylanbrc | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> R e. NzRing ) |
| 58 | simplrl | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> x e. U ) |
|
| 59 | simplrr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> r e. RR+ ) |
|
| 60 | eqid | |- ( if ( 1 <_ ( ( ( norm ` R ) ` x ) x. r ) , 1 , ( ( ( norm ` R ) ` x ) x. r ) ) x. ( ( ( norm ` R ) ` x ) / 2 ) ) = ( if ( 1 <_ ( ( ( norm ` R ) ` x ) x. r ) , 1 , ( ( ( norm ` R ) ` x ) x. r ) ) x. ( ( ( norm ` R ) ` x ) / 2 ) ) |
|
| 61 | 1 2 3 52 33 53 57 58 59 60 | nrginvrcnlem | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 62 | 51 61 | pm2.61dane | |- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 63 | 16 18 | ovresd | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( x ( ( dist ` R ) |` ( U X. U ) ) y ) = ( x ( dist ` R ) y ) ) |
| 64 | 63 | breq1d | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s <-> ( x ( dist ` R ) y ) < s ) ) |
| 65 | simpl | |- ( ( x e. U /\ r e. RR+ ) -> x e. U ) |
|
| 66 | ffvelcdm | |- ( ( I : U --> U /\ x e. U ) -> ( I ` x ) e. U ) |
|
| 67 | 11 65 66 | syl2an | |- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> ( I ` x ) e. U ) |
| 68 | 67 | adantr | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( I ` x ) e. U ) |
| 69 | 68 31 | ovresd | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) = ( ( I ` x ) ( dist ` R ) ( I ` y ) ) ) |
| 70 | 69 | breq1d | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r <-> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 71 | 64 70 | imbi12d | |- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) <-> ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) ) |
| 72 | 71 | ralbidva | |- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> ( A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) <-> A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) ) |
| 73 | 72 | rexbidv | |- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> ( E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) <-> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) ) |
| 74 | 62 73 | mpbird | |- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) |
| 75 | 74 | ralrimivva | |- ( R e. NrmRing -> A. x e. U A. r e. RR+ E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) |
| 76 | xpss12 | |- ( ( U C_ X /\ U C_ X ) -> ( U X. U ) C_ ( X X. X ) ) |
|
| 77 | 15 15 76 | mp2an | |- ( U X. U ) C_ ( X X. X ) |
| 78 | resabs1 | |- ( ( U X. U ) C_ ( X X. X ) -> ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) = ( ( dist ` R ) |` ( U X. U ) ) ) |
|
| 79 | 77 78 | ax-mp | |- ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) = ( ( dist ` R ) |` ( U X. U ) ) |
| 80 | eqid | |- ( ( dist ` R ) |` ( X X. X ) ) = ( ( dist ` R ) |` ( X X. X ) ) |
|
| 81 | 1 80 | xmsxmet | |- ( R e. *MetSp -> ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) ) |
| 82 | 25 26 27 81 | 4syl | |- ( R e. NrmRing -> ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) ) |
| 83 | xmetres2 | |- ( ( ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) /\ U C_ X ) -> ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) e. ( *Met ` U ) ) |
|
| 84 | 82 15 83 | sylancl | |- ( R e. NrmRing -> ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) e. ( *Met ` U ) ) |
| 85 | 79 84 | eqeltrrid | |- ( R e. NrmRing -> ( ( dist ` R ) |` ( U X. U ) ) e. ( *Met ` U ) ) |
| 86 | eqid | |- ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) |
|
| 87 | 86 86 | metcn | |- ( ( ( ( dist ` R ) |` ( U X. U ) ) e. ( *Met ` U ) /\ ( ( dist ` R ) |` ( U X. U ) ) e. ( *Met ` U ) ) -> ( I e. ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) <-> ( I : U --> U /\ A. x e. U A. r e. RR+ E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) ) ) |
| 88 | 85 85 87 | syl2anc | |- ( R e. NrmRing -> ( I e. ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) <-> ( I : U --> U /\ A. x e. U A. r e. RR+ E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) ) ) |
| 89 | 11 75 88 | mpbir2and | |- ( R e. NrmRing -> I e. ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) ) |
| 90 | 4 1 80 | mstopn | |- ( R e. MetSp -> J = ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) ) |
| 91 | 25 26 90 | 3syl | |- ( R e. NrmRing -> J = ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) ) |
| 92 | 91 | oveq1d | |- ( R e. NrmRing -> ( J |`t U ) = ( ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |`t U ) ) |
| 93 | 79 | eqcomi | |- ( ( dist ` R ) |` ( U X. U ) ) = ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) |
| 94 | eqid | |- ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |
|
| 95 | 93 94 86 | metrest | |- ( ( ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) /\ U C_ X ) -> ( ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |`t U ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) |
| 96 | 82 15 95 | sylancl | |- ( R e. NrmRing -> ( ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |`t U ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) |
| 97 | 92 96 | eqtrd | |- ( R e. NrmRing -> ( J |`t U ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) |
| 98 | 97 97 | oveq12d | |- ( R e. NrmRing -> ( ( J |`t U ) Cn ( J |`t U ) ) = ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) ) |
| 99 | 89 98 | eleqtrrd | |- ( R e. NrmRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) |