This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element { 0 } . (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring1eq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ring1eq0.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ring1eq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 1 = 0 → 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1eq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ring1eq0.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | ring1eq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 1 = 0 ) | |
| 5 | 4 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = ( 0 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 6 | 4 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = ( 0 ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 7 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑅 ∈ Ring ) | |
| 8 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 10 | 1 9 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 11 | 7 8 10 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 12 | simpl3 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑌 ∈ 𝐵 ) | |
| 13 | 1 9 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑌 ) = 0 ) |
| 14 | 7 12 13 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑌 ) = 0 ) |
| 15 | 11 14 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = ( 0 ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 16 | 6 15 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = ( 0 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 17 | 5 16 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = ( 1 ( .r ‘ 𝑅 ) 𝑌 ) ) |
| 18 | 1 9 2 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 19 | 7 8 18 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑋 ) |
| 20 | 1 9 2 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 21 | 7 12 20 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 22 | 17 19 21 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 1 = 0 ) → 𝑋 = 𝑌 ) |
| 23 | 22 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 1 = 0 → 𝑋 = 𝑌 ) ) |