This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | ||
| Assertion | xmseq0 | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | |
| 3 | ovres | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = 0 ↔ ( 𝐴 𝐷 𝐵 ) = 0 ) ) |
| 6 | 1 2 | xmsxmet2 | ⊢ ( 𝑀 ∈ ∞MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 | xmeteq0 | ⊢ ( ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) | |
| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 9 | 5 8 | bitr3d | ⊢ ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |