This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nneob | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 2o ·o 𝑥 ) = ( 2o ·o 𝑦 ) ) | |
| 2 | 1 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 = ( 2o ·o 𝑥 ) ↔ 𝐴 = ( 2o ·o 𝑦 ) ) ) |
| 3 | 2 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑦 ∈ ω 𝐴 = ( 2o ·o 𝑦 ) ) |
| 4 | nnneo | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 = ( 2o ·o 𝑦 ) ) → ¬ suc 𝐴 = ( 2o ·o 𝑥 ) ) | |
| 5 | 4 | 3com23 | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 = ( 2o ·o 𝑦 ) ∧ 𝑥 ∈ ω ) → ¬ suc 𝐴 = ( 2o ·o 𝑥 ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝐴 = ( 2o ·o 𝑦 ) ) ∧ 𝑥 ∈ ω ) → ¬ suc 𝐴 = ( 2o ·o 𝑥 ) ) |
| 7 | 6 | nrexdv | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 = ( 2o ·o 𝑦 ) ) → ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) |
| 8 | 7 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ ω 𝐴 = ( 2o ·o 𝑦 ) → ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) |
| 9 | 3 8 | sylbi | ⊢ ( ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) → ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) |
| 10 | suceq | ⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝑦 = ∅ → ( suc 𝑦 = ( 2o ·o 𝑥 ) ↔ suc ∅ = ( 2o ·o 𝑥 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑦 = ∅ → ( ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω suc ∅ = ( 2o ·o 𝑥 ) ) ) |
| 13 | 12 | notbid | ⊢ ( 𝑦 = ∅ → ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ ω suc ∅ = ( 2o ·o 𝑥 ) ) ) |
| 14 | eqeq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 = ( 2o ·o 𝑥 ) ↔ ∅ = ( 2o ·o 𝑥 ) ) ) | |
| 15 | 14 | rexbidv | ⊢ ( 𝑦 = ∅ → ( ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω ∅ = ( 2o ·o 𝑥 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑦 = ∅ → ( ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ) ↔ ( ¬ ∃ 𝑥 ∈ ω suc ∅ = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω ∅ = ( 2o ·o 𝑥 ) ) ) ) |
| 17 | suceq | ⊢ ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 ) | |
| 18 | 17 | eqeq1d | ⊢ ( 𝑦 = 𝑧 → ( suc 𝑦 = ( 2o ·o 𝑥 ) ↔ suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 20 | 19 | notbid | ⊢ ( 𝑦 = 𝑧 → ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 21 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( 2o ·o 𝑥 ) ↔ 𝑧 = ( 2o ·o 𝑥 ) ) ) | |
| 22 | 21 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 23 | 20 22 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ) ↔ ( ¬ ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) ) ) ) |
| 24 | suceq | ⊢ ( 𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧 ) | |
| 25 | 24 | eqeq1d | ⊢ ( 𝑦 = suc 𝑧 → ( suc 𝑦 = ( 2o ·o 𝑥 ) ↔ suc suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 26 | 25 | rexbidv | ⊢ ( 𝑦 = suc 𝑧 → ( ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 27 | 26 | notbid | ⊢ ( 𝑦 = suc 𝑧 → ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 28 | eqeq1 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑦 = ( 2o ·o 𝑥 ) ↔ suc 𝑧 = ( 2o ·o 𝑥 ) ) ) | |
| 29 | 28 | rexbidv | ⊢ ( 𝑦 = suc 𝑧 → ( ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 30 | 27 29 | imbi12d | ⊢ ( 𝑦 = suc 𝑧 → ( ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ) ↔ ( ¬ ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) ) ) ) |
| 31 | suceq | ⊢ ( 𝑦 = 𝐴 → suc 𝑦 = suc 𝐴 ) | |
| 32 | 31 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( suc 𝑦 = ( 2o ·o 𝑥 ) ↔ suc 𝐴 = ( 2o ·o 𝑥 ) ) ) |
| 33 | 32 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) ) |
| 34 | 33 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) ) |
| 35 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ( 2o ·o 𝑥 ) ↔ 𝐴 = ( 2o ·o 𝑥 ) ) ) | |
| 36 | 35 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) ) ) |
| 37 | 34 36 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ¬ ∃ 𝑥 ∈ ω suc 𝑦 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑦 = ( 2o ·o 𝑥 ) ) ↔ ( ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) ) ) ) |
| 38 | peano1 | ⊢ ∅ ∈ ω | |
| 39 | eqid | ⊢ ∅ = ∅ | |
| 40 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 2o ·o 𝑥 ) = ( 2o ·o ∅ ) ) | |
| 41 | 2on | ⊢ 2o ∈ On | |
| 42 | om0 | ⊢ ( 2o ∈ On → ( 2o ·o ∅ ) = ∅ ) | |
| 43 | 41 42 | ax-mp | ⊢ ( 2o ·o ∅ ) = ∅ |
| 44 | 40 43 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 2o ·o 𝑥 ) = ∅ ) |
| 45 | 44 | rspceeqv | ⊢ ( ( ∅ ∈ ω ∧ ∅ = ∅ ) → ∃ 𝑥 ∈ ω ∅ = ( 2o ·o 𝑥 ) ) |
| 46 | 38 39 45 | mp2an | ⊢ ∃ 𝑥 ∈ ω ∅ = ( 2o ·o 𝑥 ) |
| 47 | 46 | a1i | ⊢ ( ¬ ∃ 𝑥 ∈ ω suc ∅ = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω ∅ = ( 2o ·o 𝑥 ) ) |
| 48 | 1 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ( 2o ·o 𝑥 ) ↔ 𝑧 = ( 2o ·o 𝑦 ) ) ) |
| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑦 ∈ ω 𝑧 = ( 2o ·o 𝑦 ) ) |
| 50 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 51 | 2onn | ⊢ 2o ∈ ω | |
| 52 | nnmsuc | ⊢ ( ( 2o ∈ ω ∧ 𝑦 ∈ ω ) → ( 2o ·o suc 𝑦 ) = ( ( 2o ·o 𝑦 ) +o 2o ) ) | |
| 53 | 51 52 | mpan | ⊢ ( 𝑦 ∈ ω → ( 2o ·o suc 𝑦 ) = ( ( 2o ·o 𝑦 ) +o 2o ) ) |
| 54 | df-2o | ⊢ 2o = suc 1o | |
| 55 | 54 | oveq2i | ⊢ ( ( 2o ·o 𝑦 ) +o 2o ) = ( ( 2o ·o 𝑦 ) +o suc 1o ) |
| 56 | nnmcl | ⊢ ( ( 2o ∈ ω ∧ 𝑦 ∈ ω ) → ( 2o ·o 𝑦 ) ∈ ω ) | |
| 57 | 51 56 | mpan | ⊢ ( 𝑦 ∈ ω → ( 2o ·o 𝑦 ) ∈ ω ) |
| 58 | 1onn | ⊢ 1o ∈ ω | |
| 59 | nnasuc | ⊢ ( ( ( 2o ·o 𝑦 ) ∈ ω ∧ 1o ∈ ω ) → ( ( 2o ·o 𝑦 ) +o suc 1o ) = suc ( ( 2o ·o 𝑦 ) +o 1o ) ) | |
| 60 | 57 58 59 | sylancl | ⊢ ( 𝑦 ∈ ω → ( ( 2o ·o 𝑦 ) +o suc 1o ) = suc ( ( 2o ·o 𝑦 ) +o 1o ) ) |
| 61 | 55 60 | eqtr2id | ⊢ ( 𝑦 ∈ ω → suc ( ( 2o ·o 𝑦 ) +o 1o ) = ( ( 2o ·o 𝑦 ) +o 2o ) ) |
| 62 | nnon | ⊢ ( ( 2o ·o 𝑦 ) ∈ ω → ( 2o ·o 𝑦 ) ∈ On ) | |
| 63 | oa1suc | ⊢ ( ( 2o ·o 𝑦 ) ∈ On → ( ( 2o ·o 𝑦 ) +o 1o ) = suc ( 2o ·o 𝑦 ) ) | |
| 64 | suceq | ⊢ ( ( ( 2o ·o 𝑦 ) +o 1o ) = suc ( 2o ·o 𝑦 ) → suc ( ( 2o ·o 𝑦 ) +o 1o ) = suc suc ( 2o ·o 𝑦 ) ) | |
| 65 | 57 62 63 64 | 4syl | ⊢ ( 𝑦 ∈ ω → suc ( ( 2o ·o 𝑦 ) +o 1o ) = suc suc ( 2o ·o 𝑦 ) ) |
| 66 | 53 61 65 | 3eqtr2rd | ⊢ ( 𝑦 ∈ ω → suc suc ( 2o ·o 𝑦 ) = ( 2o ·o suc 𝑦 ) ) |
| 67 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 2o ·o 𝑥 ) = ( 2o ·o suc 𝑦 ) ) | |
| 68 | 67 | rspceeqv | ⊢ ( ( suc 𝑦 ∈ ω ∧ suc suc ( 2o ·o 𝑦 ) = ( 2o ·o suc 𝑦 ) ) → ∃ 𝑥 ∈ ω suc suc ( 2o ·o 𝑦 ) = ( 2o ·o 𝑥 ) ) |
| 69 | 50 66 68 | syl2anc | ⊢ ( 𝑦 ∈ ω → ∃ 𝑥 ∈ ω suc suc ( 2o ·o 𝑦 ) = ( 2o ·o 𝑥 ) ) |
| 70 | suceq | ⊢ ( 𝑧 = ( 2o ·o 𝑦 ) → suc 𝑧 = suc ( 2o ·o 𝑦 ) ) | |
| 71 | suceq | ⊢ ( suc 𝑧 = suc ( 2o ·o 𝑦 ) → suc suc 𝑧 = suc suc ( 2o ·o 𝑦 ) ) | |
| 72 | 70 71 | syl | ⊢ ( 𝑧 = ( 2o ·o 𝑦 ) → suc suc 𝑧 = suc suc ( 2o ·o 𝑦 ) ) |
| 73 | 72 | eqeq1d | ⊢ ( 𝑧 = ( 2o ·o 𝑦 ) → ( suc suc 𝑧 = ( 2o ·o 𝑥 ) ↔ suc suc ( 2o ·o 𝑦 ) = ( 2o ·o 𝑥 ) ) ) |
| 74 | 73 | rexbidv | ⊢ ( 𝑧 = ( 2o ·o 𝑦 ) → ( ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ↔ ∃ 𝑥 ∈ ω suc suc ( 2o ·o 𝑦 ) = ( 2o ·o 𝑥 ) ) ) |
| 75 | 69 74 | syl5ibrcom | ⊢ ( 𝑦 ∈ ω → ( 𝑧 = ( 2o ·o 𝑦 ) → ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 76 | 75 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ ω 𝑧 = ( 2o ·o 𝑦 ) → ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ) |
| 77 | 76 | a1i | ⊢ ( 𝑧 ∈ ω → ( ∃ 𝑦 ∈ ω 𝑧 = ( 2o ·o 𝑦 ) → ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 78 | 49 77 | biimtrid | ⊢ ( 𝑧 ∈ ω → ( ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 79 | 78 | con3d | ⊢ ( 𝑧 ∈ ω → ( ¬ ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) → ¬ ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) ) ) |
| 80 | con1 | ⊢ ( ( ¬ ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) ) → ( ¬ ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) ) ) | |
| 81 | 79 80 | syl9 | ⊢ ( 𝑧 ∈ ω → ( ( ¬ ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝑧 = ( 2o ·o 𝑥 ) ) → ( ¬ ∃ 𝑥 ∈ ω suc suc 𝑧 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω suc 𝑧 = ( 2o ·o 𝑥 ) ) ) ) |
| 82 | 16 23 30 37 47 81 | finds | ⊢ ( 𝐴 ∈ ω → ( ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) → ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) ) ) |
| 83 | 9 82 | impbid2 | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω 𝐴 = ( 2o ·o 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ ω suc 𝐴 = ( 2o ·o 𝑥 ) ) ) |