This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nneob | |- ( A e. _om -> ( E. x e. _om A = ( 2o .o x ) <-> -. E. x e. _om suc A = ( 2o .o x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = y -> ( 2o .o x ) = ( 2o .o y ) ) |
|
| 2 | 1 | eqeq2d | |- ( x = y -> ( A = ( 2o .o x ) <-> A = ( 2o .o y ) ) ) |
| 3 | 2 | cbvrexvw | |- ( E. x e. _om A = ( 2o .o x ) <-> E. y e. _om A = ( 2o .o y ) ) |
| 4 | nnneo | |- ( ( y e. _om /\ x e. _om /\ A = ( 2o .o y ) ) -> -. suc A = ( 2o .o x ) ) |
|
| 5 | 4 | 3com23 | |- ( ( y e. _om /\ A = ( 2o .o y ) /\ x e. _om ) -> -. suc A = ( 2o .o x ) ) |
| 6 | 5 | 3expa | |- ( ( ( y e. _om /\ A = ( 2o .o y ) ) /\ x e. _om ) -> -. suc A = ( 2o .o x ) ) |
| 7 | 6 | nrexdv | |- ( ( y e. _om /\ A = ( 2o .o y ) ) -> -. E. x e. _om suc A = ( 2o .o x ) ) |
| 8 | 7 | rexlimiva | |- ( E. y e. _om A = ( 2o .o y ) -> -. E. x e. _om suc A = ( 2o .o x ) ) |
| 9 | 3 8 | sylbi | |- ( E. x e. _om A = ( 2o .o x ) -> -. E. x e. _om suc A = ( 2o .o x ) ) |
| 10 | suceq | |- ( y = (/) -> suc y = suc (/) ) |
|
| 11 | 10 | eqeq1d | |- ( y = (/) -> ( suc y = ( 2o .o x ) <-> suc (/) = ( 2o .o x ) ) ) |
| 12 | 11 | rexbidv | |- ( y = (/) -> ( E. x e. _om suc y = ( 2o .o x ) <-> E. x e. _om suc (/) = ( 2o .o x ) ) ) |
| 13 | 12 | notbid | |- ( y = (/) -> ( -. E. x e. _om suc y = ( 2o .o x ) <-> -. E. x e. _om suc (/) = ( 2o .o x ) ) ) |
| 14 | eqeq1 | |- ( y = (/) -> ( y = ( 2o .o x ) <-> (/) = ( 2o .o x ) ) ) |
|
| 15 | 14 | rexbidv | |- ( y = (/) -> ( E. x e. _om y = ( 2o .o x ) <-> E. x e. _om (/) = ( 2o .o x ) ) ) |
| 16 | 13 15 | imbi12d | |- ( y = (/) -> ( ( -. E. x e. _om suc y = ( 2o .o x ) -> E. x e. _om y = ( 2o .o x ) ) <-> ( -. E. x e. _om suc (/) = ( 2o .o x ) -> E. x e. _om (/) = ( 2o .o x ) ) ) ) |
| 17 | suceq | |- ( y = z -> suc y = suc z ) |
|
| 18 | 17 | eqeq1d | |- ( y = z -> ( suc y = ( 2o .o x ) <-> suc z = ( 2o .o x ) ) ) |
| 19 | 18 | rexbidv | |- ( y = z -> ( E. x e. _om suc y = ( 2o .o x ) <-> E. x e. _om suc z = ( 2o .o x ) ) ) |
| 20 | 19 | notbid | |- ( y = z -> ( -. E. x e. _om suc y = ( 2o .o x ) <-> -. E. x e. _om suc z = ( 2o .o x ) ) ) |
| 21 | eqeq1 | |- ( y = z -> ( y = ( 2o .o x ) <-> z = ( 2o .o x ) ) ) |
|
| 22 | 21 | rexbidv | |- ( y = z -> ( E. x e. _om y = ( 2o .o x ) <-> E. x e. _om z = ( 2o .o x ) ) ) |
| 23 | 20 22 | imbi12d | |- ( y = z -> ( ( -. E. x e. _om suc y = ( 2o .o x ) -> E. x e. _om y = ( 2o .o x ) ) <-> ( -. E. x e. _om suc z = ( 2o .o x ) -> E. x e. _om z = ( 2o .o x ) ) ) ) |
| 24 | suceq | |- ( y = suc z -> suc y = suc suc z ) |
|
| 25 | 24 | eqeq1d | |- ( y = suc z -> ( suc y = ( 2o .o x ) <-> suc suc z = ( 2o .o x ) ) ) |
| 26 | 25 | rexbidv | |- ( y = suc z -> ( E. x e. _om suc y = ( 2o .o x ) <-> E. x e. _om suc suc z = ( 2o .o x ) ) ) |
| 27 | 26 | notbid | |- ( y = suc z -> ( -. E. x e. _om suc y = ( 2o .o x ) <-> -. E. x e. _om suc suc z = ( 2o .o x ) ) ) |
| 28 | eqeq1 | |- ( y = suc z -> ( y = ( 2o .o x ) <-> suc z = ( 2o .o x ) ) ) |
|
| 29 | 28 | rexbidv | |- ( y = suc z -> ( E. x e. _om y = ( 2o .o x ) <-> E. x e. _om suc z = ( 2o .o x ) ) ) |
| 30 | 27 29 | imbi12d | |- ( y = suc z -> ( ( -. E. x e. _om suc y = ( 2o .o x ) -> E. x e. _om y = ( 2o .o x ) ) <-> ( -. E. x e. _om suc suc z = ( 2o .o x ) -> E. x e. _om suc z = ( 2o .o x ) ) ) ) |
| 31 | suceq | |- ( y = A -> suc y = suc A ) |
|
| 32 | 31 | eqeq1d | |- ( y = A -> ( suc y = ( 2o .o x ) <-> suc A = ( 2o .o x ) ) ) |
| 33 | 32 | rexbidv | |- ( y = A -> ( E. x e. _om suc y = ( 2o .o x ) <-> E. x e. _om suc A = ( 2o .o x ) ) ) |
| 34 | 33 | notbid | |- ( y = A -> ( -. E. x e. _om suc y = ( 2o .o x ) <-> -. E. x e. _om suc A = ( 2o .o x ) ) ) |
| 35 | eqeq1 | |- ( y = A -> ( y = ( 2o .o x ) <-> A = ( 2o .o x ) ) ) |
|
| 36 | 35 | rexbidv | |- ( y = A -> ( E. x e. _om y = ( 2o .o x ) <-> E. x e. _om A = ( 2o .o x ) ) ) |
| 37 | 34 36 | imbi12d | |- ( y = A -> ( ( -. E. x e. _om suc y = ( 2o .o x ) -> E. x e. _om y = ( 2o .o x ) ) <-> ( -. E. x e. _om suc A = ( 2o .o x ) -> E. x e. _om A = ( 2o .o x ) ) ) ) |
| 38 | peano1 | |- (/) e. _om |
|
| 39 | eqid | |- (/) = (/) |
|
| 40 | oveq2 | |- ( x = (/) -> ( 2o .o x ) = ( 2o .o (/) ) ) |
|
| 41 | 2on | |- 2o e. On |
|
| 42 | om0 | |- ( 2o e. On -> ( 2o .o (/) ) = (/) ) |
|
| 43 | 41 42 | ax-mp | |- ( 2o .o (/) ) = (/) |
| 44 | 40 43 | eqtrdi | |- ( x = (/) -> ( 2o .o x ) = (/) ) |
| 45 | 44 | rspceeqv | |- ( ( (/) e. _om /\ (/) = (/) ) -> E. x e. _om (/) = ( 2o .o x ) ) |
| 46 | 38 39 45 | mp2an | |- E. x e. _om (/) = ( 2o .o x ) |
| 47 | 46 | a1i | |- ( -. E. x e. _om suc (/) = ( 2o .o x ) -> E. x e. _om (/) = ( 2o .o x ) ) |
| 48 | 1 | eqeq2d | |- ( x = y -> ( z = ( 2o .o x ) <-> z = ( 2o .o y ) ) ) |
| 49 | 48 | cbvrexvw | |- ( E. x e. _om z = ( 2o .o x ) <-> E. y e. _om z = ( 2o .o y ) ) |
| 50 | peano2 | |- ( y e. _om -> suc y e. _om ) |
|
| 51 | 2onn | |- 2o e. _om |
|
| 52 | nnmsuc | |- ( ( 2o e. _om /\ y e. _om ) -> ( 2o .o suc y ) = ( ( 2o .o y ) +o 2o ) ) |
|
| 53 | 51 52 | mpan | |- ( y e. _om -> ( 2o .o suc y ) = ( ( 2o .o y ) +o 2o ) ) |
| 54 | df-2o | |- 2o = suc 1o |
|
| 55 | 54 | oveq2i | |- ( ( 2o .o y ) +o 2o ) = ( ( 2o .o y ) +o suc 1o ) |
| 56 | nnmcl | |- ( ( 2o e. _om /\ y e. _om ) -> ( 2o .o y ) e. _om ) |
|
| 57 | 51 56 | mpan | |- ( y e. _om -> ( 2o .o y ) e. _om ) |
| 58 | 1onn | |- 1o e. _om |
|
| 59 | nnasuc | |- ( ( ( 2o .o y ) e. _om /\ 1o e. _om ) -> ( ( 2o .o y ) +o suc 1o ) = suc ( ( 2o .o y ) +o 1o ) ) |
|
| 60 | 57 58 59 | sylancl | |- ( y e. _om -> ( ( 2o .o y ) +o suc 1o ) = suc ( ( 2o .o y ) +o 1o ) ) |
| 61 | 55 60 | eqtr2id | |- ( y e. _om -> suc ( ( 2o .o y ) +o 1o ) = ( ( 2o .o y ) +o 2o ) ) |
| 62 | nnon | |- ( ( 2o .o y ) e. _om -> ( 2o .o y ) e. On ) |
|
| 63 | oa1suc | |- ( ( 2o .o y ) e. On -> ( ( 2o .o y ) +o 1o ) = suc ( 2o .o y ) ) |
|
| 64 | suceq | |- ( ( ( 2o .o y ) +o 1o ) = suc ( 2o .o y ) -> suc ( ( 2o .o y ) +o 1o ) = suc suc ( 2o .o y ) ) |
|
| 65 | 57 62 63 64 | 4syl | |- ( y e. _om -> suc ( ( 2o .o y ) +o 1o ) = suc suc ( 2o .o y ) ) |
| 66 | 53 61 65 | 3eqtr2rd | |- ( y e. _om -> suc suc ( 2o .o y ) = ( 2o .o suc y ) ) |
| 67 | oveq2 | |- ( x = suc y -> ( 2o .o x ) = ( 2o .o suc y ) ) |
|
| 68 | 67 | rspceeqv | |- ( ( suc y e. _om /\ suc suc ( 2o .o y ) = ( 2o .o suc y ) ) -> E. x e. _om suc suc ( 2o .o y ) = ( 2o .o x ) ) |
| 69 | 50 66 68 | syl2anc | |- ( y e. _om -> E. x e. _om suc suc ( 2o .o y ) = ( 2o .o x ) ) |
| 70 | suceq | |- ( z = ( 2o .o y ) -> suc z = suc ( 2o .o y ) ) |
|
| 71 | suceq | |- ( suc z = suc ( 2o .o y ) -> suc suc z = suc suc ( 2o .o y ) ) |
|
| 72 | 70 71 | syl | |- ( z = ( 2o .o y ) -> suc suc z = suc suc ( 2o .o y ) ) |
| 73 | 72 | eqeq1d | |- ( z = ( 2o .o y ) -> ( suc suc z = ( 2o .o x ) <-> suc suc ( 2o .o y ) = ( 2o .o x ) ) ) |
| 74 | 73 | rexbidv | |- ( z = ( 2o .o y ) -> ( E. x e. _om suc suc z = ( 2o .o x ) <-> E. x e. _om suc suc ( 2o .o y ) = ( 2o .o x ) ) ) |
| 75 | 69 74 | syl5ibrcom | |- ( y e. _om -> ( z = ( 2o .o y ) -> E. x e. _om suc suc z = ( 2o .o x ) ) ) |
| 76 | 75 | rexlimiv | |- ( E. y e. _om z = ( 2o .o y ) -> E. x e. _om suc suc z = ( 2o .o x ) ) |
| 77 | 76 | a1i | |- ( z e. _om -> ( E. y e. _om z = ( 2o .o y ) -> E. x e. _om suc suc z = ( 2o .o x ) ) ) |
| 78 | 49 77 | biimtrid | |- ( z e. _om -> ( E. x e. _om z = ( 2o .o x ) -> E. x e. _om suc suc z = ( 2o .o x ) ) ) |
| 79 | 78 | con3d | |- ( z e. _om -> ( -. E. x e. _om suc suc z = ( 2o .o x ) -> -. E. x e. _om z = ( 2o .o x ) ) ) |
| 80 | con1 | |- ( ( -. E. x e. _om suc z = ( 2o .o x ) -> E. x e. _om z = ( 2o .o x ) ) -> ( -. E. x e. _om z = ( 2o .o x ) -> E. x e. _om suc z = ( 2o .o x ) ) ) |
|
| 81 | 79 80 | syl9 | |- ( z e. _om -> ( ( -. E. x e. _om suc z = ( 2o .o x ) -> E. x e. _om z = ( 2o .o x ) ) -> ( -. E. x e. _om suc suc z = ( 2o .o x ) -> E. x e. _om suc z = ( 2o .o x ) ) ) ) |
| 82 | 16 23 30 37 47 81 | finds | |- ( A e. _om -> ( -. E. x e. _om suc A = ( 2o .o x ) -> E. x e. _om A = ( 2o .o x ) ) ) |
| 83 | 9 82 | impbid2 | |- ( A e. _om -> ( E. x e. _om A = ( 2o .o x ) <-> -. E. x e. _om suc A = ( 2o .o x ) ) ) |