This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnneo | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ suc 𝐶 = ( 2o ·o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 2 | onnbtwn | ⊢ ( 𝐴 ∈ On → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ω → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| 5 | suceq | ⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → suc 𝐶 = suc ( 2o ·o 𝐴 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
| 8 | ovex | ⊢ ( 2o ·o 𝐴 ) ∈ V | |
| 9 | 8 | sucid | ⊢ ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) |
| 10 | eleq2 | ⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) | |
| 11 | 9 10 | mpbii | ⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) |
| 12 | 2onn | ⊢ 2o ∈ ω | |
| 13 | nnmord | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2o ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) | |
| 14 | 12 13 | mp3an3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
| 15 | simpl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) → 𝐴 ∈ 𝐵 ) | |
| 16 | 14 15 | biimtrrdi | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 17 | 11 16 | syl5 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 18 | simpr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) | |
| 19 | nnmcl | ⊢ ( ( 2o ∈ ω ∧ 𝐴 ∈ ω ) → ( 2o ·o 𝐴 ) ∈ ω ) | |
| 20 | 12 19 | mpan | ⊢ ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) ∈ ω ) |
| 21 | nnon | ⊢ ( ( 2o ·o 𝐴 ) ∈ ω → ( 2o ·o 𝐴 ) ∈ On ) | |
| 22 | oa1suc | ⊢ ( ( 2o ·o 𝐴 ) ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( 𝐴 ∈ ω → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) |
| 24 | 1oex | ⊢ 1o ∈ V | |
| 25 | 24 | sucid | ⊢ 1o ∈ suc 1o |
| 26 | df-2o | ⊢ 2o = suc 1o | |
| 27 | 25 26 | eleqtrri | ⊢ 1o ∈ 2o |
| 28 | 1onn | ⊢ 1o ∈ ω | |
| 29 | nnaord | ⊢ ( ( 1o ∈ ω ∧ 2o ∈ ω ∧ ( 2o ·o 𝐴 ) ∈ ω ) → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) | |
| 30 | 28 12 20 29 | mp3an12i | ⊢ ( 𝐴 ∈ ω → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) |
| 31 | 27 30 | mpbii | ⊢ ( 𝐴 ∈ ω → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) |
| 32 | nnmsuc | ⊢ ( ( 2o ∈ ω ∧ 𝐴 ∈ ω ) → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) | |
| 33 | 12 32 | mpan | ⊢ ( 𝐴 ∈ ω → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) |
| 34 | 31 33 | eleqtrrd | ⊢ ( 𝐴 ∈ ω → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 35 | 23 34 | eqeltrrd | ⊢ ( 𝐴 ∈ ω → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 37 | 18 36 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 38 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 39 | nnmord | ⊢ ( ( 𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2o ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) | |
| 40 | 12 39 | mp3an3 | ⊢ ( ( 𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 41 | 38 40 | sylan2 | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 42 | 41 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 44 | 37 43 | mpbird | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ) |
| 45 | 44 | simpld | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → 𝐵 ∈ suc 𝐴 ) |
| 46 | 45 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐵 ∈ suc 𝐴 ) ) |
| 47 | 17 46 | jcad | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
| 48 | 47 | 3adant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
| 49 | 7 48 | sylbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
| 50 | 4 49 | mtod | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ suc 𝐶 = ( 2o ·o 𝐵 ) ) |