This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omsmo . (Contributed by NM, 30-Nov-2003) (Revised by David Abernethy, 1-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsmolem | ⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑦 = ∅ → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∅ ) ) | |
| 2 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑦 = ∅ → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
| 5 | eleq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 7 | 6 | eleq2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 9 | eleq2 | ⊢ ( 𝑦 = suc 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ suc 𝑤 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑦 = suc 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝑤 ) ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑦 = suc 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑦 = suc 𝑤 → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 13 | noel | ⊢ ¬ 𝑧 ∈ ∅ | |
| 14 | 13 | pm2.21i | ⊢ ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) |
| 15 | 14 | a1i | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | 16 | elsuc | ⊢ ( 𝑧 ∈ suc 𝑤 ↔ ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 19 | suceq | ⊢ ( 𝑥 = 𝑤 → suc 𝑥 = suc 𝑤 ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
| 21 | 18 20 | eleq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) |
| 23 | 22 | adantll | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) |
| 24 | peano2b | ⊢ ( 𝑤 ∈ ω ↔ suc 𝑤 ∈ ω ) | |
| 25 | ffvelcdm | ⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ suc 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 ) | |
| 26 | 24 25 | sylan2b | ⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 ) |
| 27 | ssel | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑤 ) ∈ On ) ) | |
| 28 | ontr1 | ⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ On → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) | |
| 29 | 28 | expcomd | ⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ On → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 30 | 26 27 29 | syl56 | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
| 31 | 30 | impl | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 32 | 31 | adantlr | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 33 | 23 32 | mpd | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 34 | 33 | imim2d | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 35 | 34 | imp | ⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 36 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 37 | 36 | eleq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 38 | 22 37 | syl5ibrcom | ⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 39 | 38 | ad4ant23 | ⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 40 | 35 39 | jaod | ⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 41 | 17 40 | biimtrid | ⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 42 | 41 | exp31 | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑤 ∈ ω → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
| 43 | 42 | com12 | ⊢ ( 𝑤 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
| 44 | 4 8 12 15 43 | finds2 | ⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |