This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of natural numbers. Proposition 8.17 of TakeutiZaring p. 63. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 20-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐵 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o 𝐵 ) ∈ ω ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 ·o 𝑥 ) ∈ ω ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ·o 𝐵 ) ∈ ω ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o ∅ ) ∈ ω ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o 𝑦 ) ∈ ω ) ) |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o suc 𝑦 ) ∈ ω ) ) |
| 10 | nnm0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 11 | peano1 | ⊢ ∅ ∈ ω | |
| 12 | 10 11 | eqeltrdi | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) ∈ ω ) |
| 13 | nnacl | ⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) | |
| 14 | 13 | expcom | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) ) |
| 16 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) ∈ ω ↔ ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) ) |
| 18 | 15 17 | sylibrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( 𝐴 ·o suc 𝑦 ) ∈ ω ) ) |
| 19 | 18 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( 𝐴 ·o suc 𝑦 ) ∈ ω ) ) ) |
| 20 | 5 7 9 12 19 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ·o 𝑥 ) ∈ ω ) ) |
| 21 | 3 20 | vtoclga | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ·o 𝐵 ) ∈ ω ) ) |
| 22 | 21 | impcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |