This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for ordering. Compare Exercise 23 of Enderton p. 88. (Contributed by NM, 5-Dec-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ∈ On ) |
| 3 | onelss | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 5 | nnawordex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) | |
| 6 | 4 5 | sylibd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 7 | simplr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → 𝐴 ∈ 𝐵 ) | |
| 8 | eleq2 | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ 𝐵 ) ) | |
| 9 | 7 8 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 10 | peano1 | ⊢ ∅ ∈ ω | |
| 11 | nnaord | ⊢ ( ( ∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) | |
| 12 | 10 11 | mp3an1 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 13 | 12 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 14 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 16 | 15 | eleq1d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 17 | 13 16 | bitrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 19 | 9 18 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) |
| 20 | 19 | ancrd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 21 | 20 | reximdva | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 22 | 21 | ex | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 24 | 6 23 | mpdd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 25 | 17 | biimpa | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ ∅ ∈ 𝑥 ) → 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) |
| 26 | 25 8 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ ∅ ∈ 𝑥 ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| 27 | 26 | expimpd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 28 | 27 | rexlimdva | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 30 | 24 29 | impbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |