This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrabf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| elrabf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| elrabf.3 | ⊢ Ⅎ 𝑥 𝜓 | ||
| elrabf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | elrabf | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | elrabf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | elrabf.3 | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | elrabf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | elex | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } → 𝐴 ∈ V ) | |
| 6 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → 𝐴 ∈ V ) |
| 8 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 9 | 8 | eleq2i | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 10 | 1 2 | nfel | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
| 11 | 10 3 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) |
| 12 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 13 | 12 4 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 14 | 1 11 13 | elabgf | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 15 | 9 14 | bitrid | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 16 | 5 7 15 | pm5.21nii | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |