This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtr2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord | ⊢ ( ( Ord 𝐶 ∧ 𝐵 ∈ 𝐶 ) → Ord 𝐵 ) | |
| 2 | 1 | ex | ⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → Ord 𝐵 ) ) |
| 3 | 2 | ancld | ⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) ) |
| 4 | 3 | anc2li | ⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → ( Ord 𝐶 ∧ ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) ) ) |
| 5 | ordelpss | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) | |
| 6 | sspsstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) | |
| 7 | 6 | expcom | ⊢ ( 𝐵 ⊊ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) |
| 8 | 5 7 | biimtrdi | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) ) |
| 9 | 8 | expcom | ⊢ ( Ord 𝐶 → ( Ord 𝐵 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) ) ) |
| 10 | 9 | com23 | ⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → ( Ord 𝐵 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) ) ) |
| 11 | 10 | imp32 | ⊢ ( ( Ord 𝐶 ∧ ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) |
| 12 | 11 | com12 | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( Ord 𝐶 ∧ ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) → 𝐴 ⊊ 𝐶 ) ) |
| 13 | 4 12 | syl9 | ⊢ ( Ord 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ 𝐶 → 𝐴 ⊊ 𝐶 ) ) ) |
| 14 | 13 | impd | ⊢ ( Ord 𝐶 → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ⊊ 𝐶 ) ) |
| 15 | 14 | adantl | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ⊊ 𝐶 ) ) |
| 16 | ordelpss | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ⊊ 𝐶 ) ) | |
| 17 | 15 16 | sylibrd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |