This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The normalizer N_G(S) of a subset S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | nmzsubg | ⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| 2 | nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 1 | ssrab3 | ⊢ 𝑁 ⊆ 𝑋 |
| 5 | 4 | a1i | ⊢ ( 𝐺 ∈ Grp → 𝑁 ⊆ 𝑋 ) |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | 2 6 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 8 | 2 3 6 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
| 9 | 2 3 6 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 + ( 0g ‘ 𝐺 ) ) = 𝑧 ) |
| 10 | 8 9 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = ( 𝑧 + ( 0g ‘ 𝐺 ) ) ) |
| 11 | 10 | eleq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝑋 ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) |
| 13 | 1 | elnmz | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑁 ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) ) |
| 14 | 7 12 13 | sylanbrc | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑁 ) |
| 15 | 14 | ne0d | ⊢ ( 𝐺 ∈ Grp → 𝑁 ≠ ∅ ) |
| 16 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 17 | 4 | sseli | ⊢ ( 𝑧 ∈ 𝑁 → 𝑧 ∈ 𝑋 ) |
| 18 | 4 | sseli | ⊢ ( 𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋 ) |
| 19 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 + 𝑤 ) ∈ 𝑋 ) |
| 20 | 16 17 18 19 | syl3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑋 ) |
| 21 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝐺 ∈ Grp ) | |
| 22 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑁 ) | |
| 23 | 4 22 | sselid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 24 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑤 ∈ 𝑁 ) | |
| 25 | 4 24 | sselid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
| 26 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) | |
| 27 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) ) → ( ( 𝑧 + 𝑤 ) + 𝑢 ) = ( 𝑧 + ( 𝑤 + 𝑢 ) ) ) |
| 28 | 21 23 25 26 27 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + 𝑤 ) + 𝑢 ) = ( 𝑧 + ( 𝑤 + 𝑢 ) ) ) |
| 29 | 28 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ) ) |
| 30 | 2 3 21 25 26 | grpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑤 + 𝑢 ) ∈ 𝑋 ) |
| 31 | 1 | nmzbi | ⊢ ( ( 𝑧 ∈ 𝑁 ∧ ( 𝑤 + 𝑢 ) ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ) ) |
| 32 | 22 30 31 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ) ) |
| 33 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑤 + 𝑢 ) + 𝑧 ) = ( 𝑤 + ( 𝑢 + 𝑧 ) ) ) |
| 34 | 21 25 26 23 33 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑤 + 𝑢 ) + 𝑧 ) = ( 𝑤 + ( 𝑢 + 𝑧 ) ) ) |
| 35 | 34 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ) ) |
| 36 | 2 3 21 26 23 | grpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + 𝑧 ) ∈ 𝑋 ) |
| 37 | 1 | nmzbi | ⊢ ( ( 𝑤 ∈ 𝑁 ∧ ( 𝑢 + 𝑧 ) ∈ 𝑋 ) → ( ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
| 38 | 24 36 37 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
| 39 | 32 35 38 | 3bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
| 40 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑢 + 𝑧 ) + 𝑤 ) = ( 𝑢 + ( 𝑧 + 𝑤 ) ) ) |
| 41 | 21 26 23 25 40 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + 𝑧 ) + 𝑤 ) = ( 𝑢 + ( 𝑧 + 𝑤 ) ) ) |
| 42 | 41 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
| 43 | 29 39 42 | 3bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
| 44 | 43 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
| 45 | 1 | elnmz | ⊢ ( ( 𝑧 + 𝑤 ) ∈ 𝑁 ↔ ( ( 𝑧 + 𝑤 ) ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) ) |
| 46 | 20 44 45 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
| 47 | 46 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
| 48 | 47 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
| 49 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 50 | 2 49 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 51 | 17 50 | sylan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 52 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑁 ) | |
| 53 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝐺 ∈ Grp ) | |
| 54 | 51 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 55 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) | |
| 56 | 2 3 53 55 54 | grpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) |
| 57 | 2 3 53 54 56 | grpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) |
| 58 | 1 | nmzbi | ⊢ ( ( 𝑧 ∈ 𝑁 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ) ) |
| 59 | 52 57 58 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ) ) |
| 60 | 4 52 | sselid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 61 | 2 3 6 49 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
| 62 | 53 60 61 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
| 63 | 62 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 64 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑧 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) |
| 65 | 53 60 54 56 64 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) |
| 66 | 2 3 6 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 67 | 53 56 66 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 68 | 63 65 67 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 69 | 68 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 70 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) ) |
| 71 | 53 54 56 60 70 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) ) |
| 72 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) ) |
| 73 | 53 55 54 60 72 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) ) |
| 74 | 2 3 6 49 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 75 | 53 60 74 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) = ( 𝑢 + ( 0g ‘ 𝐺 ) ) ) |
| 77 | 2 3 6 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( 0g ‘ 𝐺 ) ) = 𝑢 ) |
| 78 | 53 55 77 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( 0g ‘ 𝐺 ) ) = 𝑢 ) |
| 79 | 73 76 78 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = 𝑢 ) |
| 80 | 79 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ) |
| 81 | 71 80 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ) |
| 82 | 81 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ) ) |
| 83 | 59 69 82 | 3bitr3rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 84 | 83 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 85 | 1 | elnmz | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) ) |
| 86 | 51 84 85 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) |
| 87 | 48 86 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) |
| 88 | 87 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝑁 ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) |
| 89 | 2 3 49 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ 𝑁 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑁 ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) ) ) |
| 90 | 5 15 88 89 | mpbir3and | ⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |