This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | ssnmz | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| 2 | nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 2 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 5 | 4 | sselda | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) |
| 6 | simpll | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 9 | 6 4 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝑆 ⊆ 𝑋 ) |
| 10 | simplrl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 11 | 9 10 | sseldd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 14 | 2 3 12 13 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 15 | 8 11 14 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( 0g ‘ 𝐺 ) + 𝑤 ) ) |
| 17 | 13 | subginvcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 18 | 6 10 17 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 19 | 9 18 | sseldd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 20 | simplrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) | |
| 21 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
| 22 | 8 19 11 20 21 | syl13anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
| 23 | 2 3 12 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
| 24 | 8 20 23 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
| 25 | 16 22 24 | 3eqtr3d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) = 𝑤 ) |
| 26 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( 𝑧 + 𝑤 ) ∈ 𝑆 ) | |
| 27 | 3 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) |
| 28 | 6 18 26 27 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) |
| 29 | 25 28 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → 𝑤 ∈ 𝑆 ) |
| 30 | 3 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑤 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) |
| 31 | 6 29 10 30 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) |
| 32 | simpll | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 33 | simplrl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 34 | 32 7 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 35 | simplrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) | |
| 36 | 32 33 5 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) |
| 37 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 38 | 2 3 37 | grppncan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑤 + 𝑧 ) ( -g ‘ 𝐺 ) 𝑧 ) = 𝑤 ) |
| 39 | 34 35 36 38 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → ( ( 𝑤 + 𝑧 ) ( -g ‘ 𝐺 ) 𝑧 ) = 𝑤 ) |
| 40 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) | |
| 41 | 37 | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑤 + 𝑧 ) ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 42 | 32 40 33 41 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → ( ( 𝑤 + 𝑧 ) ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 43 | 39 42 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → 𝑤 ∈ 𝑆 ) |
| 44 | 3 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 + 𝑤 ) ∈ 𝑆 ) |
| 45 | 32 33 43 44 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) → ( 𝑧 + 𝑤 ) ∈ 𝑆 ) |
| 46 | 31 45 | impbida | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 47 | 46 | anassrs | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) → ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 49 | 1 | elnmz | ⊢ ( 𝑧 ∈ 𝑁 ↔ ( 𝑧 ∈ 𝑋 ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 50 | 5 48 49 | sylanbrc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑁 ) |
| 51 | 50 | ex | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑧 ∈ 𝑆 → 𝑧 ∈ 𝑁 ) ) |
| 52 | 51 | ssrdv | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑁 ) |