This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| Assertion | nmzbi | ⊢ ( ( 𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| 2 | 1 | elnmz | ⊢ ( 𝐴 ∈ 𝑁 ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝐴 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐴 ∈ 𝑁 → ∀ 𝑧 ∈ 𝑋 ( ( 𝐴 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝐴 ) ∈ 𝑆 ) ) |
| 4 | oveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 + 𝑧 ) = ( 𝐴 + 𝐵 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 + 𝑧 ) ∈ 𝑆 ↔ ( 𝐴 + 𝐵 ) ∈ 𝑆 ) ) |
| 6 | oveq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 + 𝐴 ) = ( 𝐵 + 𝐴 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 + 𝐴 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |
| 8 | 5 7 | bibi12d | ⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐴 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝐴 ) ∈ 𝑆 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( ( 𝐴 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝐴 ) ∈ 𝑆 ) ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |
| 10 | 3 9 | sylan | ⊢ ( ( 𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |