This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally A " is a local property. (Use loclly to show N-Locally N-Locally A = N-Locally A .) (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nllyidm | ⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llytop | ⊢ ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → 𝑗 ∈ Top ) | |
| 2 | llyi | ⊢ ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) | |
| 3 | simprr3 | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) | |
| 4 | simprl | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) | |
| 5 | ssidd | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑢 ) | |
| 6 | simpl1 | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑗 ∈ Locally 𝑛-Locally 𝐴 ) | |
| 7 | 6 1 | syl | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑗 ∈ Top ) |
| 8 | restopn2 | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) | |
| 9 | 7 4 8 | syl2anc | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) |
| 10 | 4 5 9 | mpbir2and | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ) |
| 11 | simprr2 | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑦 ∈ 𝑢 ) | |
| 12 | nlly2i | ⊢ ( ( ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ∧ 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ∧ 𝑦 ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) | |
| 13 | 3 10 11 12 | syl3anc | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 14 | restopn2 | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ) ) | |
| 15 | 7 4 14 | syl2anc | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ) ) |
| 17 | 7 | adantr | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑗 ∈ Top ) |
| 18 | simpr2l | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ∈ 𝑗 ) | |
| 19 | simpr31 | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ 𝑧 ) | |
| 20 | opnneip | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑧 ∈ 𝑗 ∧ 𝑦 ∈ 𝑧 ) → 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) | |
| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
| 22 | simpr32 | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ⊆ 𝑣 ) | |
| 23 | simpr1 | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑢 ) | |
| 24 | 23 | elpwid | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑢 ) |
| 25 | 4 | adantr | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) |
| 26 | elssuni | ⊢ ( 𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗 ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ ∪ 𝑗 ) |
| 28 | 24 27 | sstrd | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ ∪ 𝑗 ) |
| 29 | eqid | ⊢ ∪ 𝑗 = ∪ 𝑗 | |
| 30 | 29 | ssnei2 | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) ∧ ( 𝑧 ⊆ 𝑣 ∧ 𝑣 ⊆ ∪ 𝑗 ) ) → 𝑣 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
| 31 | 17 21 22 28 30 | syl22anc | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
| 32 | simprr1 | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) | |
| 33 | 32 | adantr | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) |
| 34 | 24 33 | sstrd | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑥 ) |
| 35 | velpw | ⊢ ( 𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥 ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑥 ) |
| 37 | 31 36 | elind | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
| 38 | restabs | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗 ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) | |
| 39 | 17 24 25 38 | syl3anc | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) |
| 40 | simpr33 | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) | |
| 41 | 39 40 | eqeltrrd | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 42 | 37 41 | jca | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 43 | 42 | 3exp2 | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑣 ∈ 𝒫 𝑢 → ( ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
| 45 | 16 44 | sylbid | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
| 46 | 45 | rexlimdv | ⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 47 | 46 | expimpd | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 48 | 47 | reximdv2 | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 49 | 13 48 | mpd | ⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 50 | 2 49 | rexlimddv | ⊢ ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 51 | 50 | 3expb | ⊢ ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 52 | 51 | ralrimivva | ⊢ ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 53 | isnlly | ⊢ ( 𝑗 ∈ 𝑛-Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) | |
| 54 | 1 52 53 | sylanbrc | ⊢ ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → 𝑗 ∈ 𝑛-Locally 𝐴 ) |
| 55 | 54 | ssriv | ⊢ Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴 |
| 56 | nllyrest | ⊢ ( ( 𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝑛-Locally 𝐴 ) | |
| 57 | 56 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝑛-Locally 𝐴 ) |
| 58 | nllytop | ⊢ ( 𝑗 ∈ 𝑛-Locally 𝐴 → 𝑗 ∈ Top ) | |
| 59 | 58 | ssriv | ⊢ 𝑛-Locally 𝐴 ⊆ Top |
| 60 | 59 | a1i | ⊢ ( ⊤ → 𝑛-Locally 𝐴 ⊆ Top ) |
| 61 | 57 60 | restlly | ⊢ ( ⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴 ) |
| 62 | 61 | mptru | ⊢ 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴 |
| 63 | 55 62 | eqssi | ⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 |