This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015) TODO ( df-riota update): Reprove using isclat instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat for a good version.
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| isclatBAD. | ⊢ ( 𝐼 ∈ CLat ↔ ( 𝐼 ∈ Poset ∧ ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) | ||
| Assertion | mreclatBAD | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | isclatBAD. | ⊢ ( 𝐼 ∈ CLat ↔ ( 𝐼 ∈ Poset ∧ ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) | |
| 3 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 4 | 3 | a1i | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
| 5 | eqid | ⊢ ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) | |
| 7 | 1 5 6 | mrelatlub | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) = ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ) |
| 8 | uniss | ⊢ ( 𝑥 ⊆ 𝐶 → ∪ 𝑥 ⊆ ∪ 𝐶 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ ∪ 𝐶 ) |
| 10 | mreuni | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝐶 = 𝑋 ) |
| 12 | 9 11 | sseqtrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ 𝑋 ) |
| 13 | 5 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 15 | 7 14 | eqeltrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 16 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) ) |
| 18 | eqid | ⊢ ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) | |
| 19 | 1 18 | mrelatglb0 | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = 𝑋 ) |
| 22 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → 𝑋 ∈ 𝐶 ) |
| 24 | 21 23 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 25 | 1 18 | mrelatglb | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ∩ 𝑥 ) |
| 26 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) | |
| 27 | 25 26 | eqeltrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 28 | 27 | 3expa | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 29 | 24 28 | pm2.61dane | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 30 | 15 29 | jca | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 31 | 30 | ex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 32 | 1 | ipobas | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 33 | sseq2 | ⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( 𝑥 ⊆ 𝐶 ↔ 𝑥 ⊆ ( Base ‘ 𝐼 ) ) ) | |
| 34 | eleq2 | ⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) | |
| 35 | eleq2 | ⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) | |
| 36 | 34 35 | anbi12d | ⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 37 | 33 36 | imbi12d | ⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
| 38 | 32 37 | syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
| 39 | 31 38 | mpbid | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 40 | 39 | alrimiv | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 41 | 4 40 2 | sylanbrc | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |