This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2g | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶 ) ) | |
| 2 | 1 | biimpar | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝑆 ∈ 𝒫 𝐶 ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ 𝒫 𝐶 ) |
| 4 | ismre | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) | |
| 5 | 4 | simp3bi | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
| 7 | simp3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) | |
| 8 | neeq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅ ) ) | |
| 9 | inteq | ⊢ ( 𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆 ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑠 = 𝑆 → ( ∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶 ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ↔ ( 𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶 ) ) ) |
| 12 | 11 | rspcva | ⊢ ( ( 𝑆 ∈ 𝒫 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) → ( 𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶 ) ) |
| 13 | 12 | 3impia | ⊢ ( ( 𝑆 ∈ 𝒫 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) |
| 14 | 3 6 7 13 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) |