This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015) TODO ( df-riota update): Reprove using isclat instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat for a good version.
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | |- I = ( toInc ` C ) |
|
| isclatBAD. | |- ( I e. CLat <-> ( I e. Poset /\ A. x ( x C_ ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) ) |
||
| Assertion | mreclatBAD | |- ( C e. ( Moore ` X ) -> I e. CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | |- I = ( toInc ` C ) |
|
| 2 | isclatBAD. | |- ( I e. CLat <-> ( I e. Poset /\ A. x ( x C_ ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) ) |
|
| 3 | 1 | ipopos | |- I e. Poset |
| 4 | 3 | a1i | |- ( C e. ( Moore ` X ) -> I e. Poset ) |
| 5 | eqid | |- ( mrCls ` C ) = ( mrCls ` C ) |
|
| 6 | eqid | |- ( lub ` I ) = ( lub ` I ) |
|
| 7 | 1 5 6 | mrelatlub | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( lub ` I ) ` x ) = ( ( mrCls ` C ) ` U. x ) ) |
| 8 | uniss | |- ( x C_ C -> U. x C_ U. C ) |
|
| 9 | 8 | adantl | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. x C_ U. C ) |
| 10 | mreuni | |- ( C e. ( Moore ` X ) -> U. C = X ) |
|
| 11 | 10 | adantr | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. C = X ) |
| 12 | 9 11 | sseqtrd | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. x C_ X ) |
| 13 | 5 | mrccl | |- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
| 14 | 12 13 | syldan | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
| 15 | 7 14 | eqeltrd | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( lub ` I ) ` x ) e. C ) |
| 16 | fveq2 | |- ( x = (/) -> ( ( glb ` I ) ` x ) = ( ( glb ` I ) ` (/) ) ) |
|
| 17 | 16 | adantl | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> ( ( glb ` I ) ` x ) = ( ( glb ` I ) ` (/) ) ) |
| 18 | eqid | |- ( glb ` I ) = ( glb ` I ) |
|
| 19 | 1 18 | mrelatglb0 | |- ( C e. ( Moore ` X ) -> ( ( glb ` I ) ` (/) ) = X ) |
| 20 | 19 | ad2antrr | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> ( ( glb ` I ) ` (/) ) = X ) |
| 21 | 17 20 | eqtrd | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> ( ( glb ` I ) ` x ) = X ) |
| 22 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 23 | 22 | ad2antrr | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> X e. C ) |
| 24 | 21 23 | eqeltrd | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> ( ( glb ` I ) ` x ) e. C ) |
| 25 | 1 18 | mrelatglb | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> ( ( glb ` I ) ` x ) = |^| x ) |
| 26 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
|
| 27 | 25 26 | eqeltrd | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> ( ( glb ` I ) ` x ) e. C ) |
| 28 | 27 | 3expa | |- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x =/= (/) ) -> ( ( glb ` I ) ` x ) e. C ) |
| 29 | 24 28 | pm2.61dane | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( glb ` I ) ` x ) e. C ) |
| 30 | 15 29 | jca | |- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( ( lub ` I ) ` x ) e. C /\ ( ( glb ` I ) ` x ) e. C ) ) |
| 31 | 30 | ex | |- ( C e. ( Moore ` X ) -> ( x C_ C -> ( ( ( lub ` I ) ` x ) e. C /\ ( ( glb ` I ) ` x ) e. C ) ) ) |
| 32 | 1 | ipobas | |- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
| 33 | sseq2 | |- ( C = ( Base ` I ) -> ( x C_ C <-> x C_ ( Base ` I ) ) ) |
|
| 34 | eleq2 | |- ( C = ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. C <-> ( ( lub ` I ) ` x ) e. ( Base ` I ) ) ) |
|
| 35 | eleq2 | |- ( C = ( Base ` I ) -> ( ( ( glb ` I ) ` x ) e. C <-> ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) |
|
| 36 | 34 35 | anbi12d | |- ( C = ( Base ` I ) -> ( ( ( ( lub ` I ) ` x ) e. C /\ ( ( glb ` I ) ` x ) e. C ) <-> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) |
| 37 | 33 36 | imbi12d | |- ( C = ( Base ` I ) -> ( ( x C_ C -> ( ( ( lub ` I ) ` x ) e. C /\ ( ( glb ` I ) ` x ) e. C ) ) <-> ( x C_ ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) ) |
| 38 | 32 37 | syl | |- ( C e. ( Moore ` X ) -> ( ( x C_ C -> ( ( ( lub ` I ) ` x ) e. C /\ ( ( glb ` I ) ` x ) e. C ) ) <-> ( x C_ ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) ) |
| 39 | 31 38 | mpbid | |- ( C e. ( Moore ` X ) -> ( x C_ ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) |
| 40 | 39 | alrimiv | |- ( C e. ( Moore ` X ) -> A. x ( x C_ ( Base ` I ) -> ( ( ( lub ` I ) ` x ) e. ( Base ` I ) /\ ( ( glb ` I ) ` x ) e. ( Base ` I ) ) ) ) |
| 41 | 4 40 2 | sylanbrc | |- ( C e. ( Moore ` X ) -> I e. CLat ) |