This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) See mrelatglbALT for an alternate proof.
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| mrelatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | ||
| Assertion | mrelatglb | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ( 𝐺 ‘ 𝑈 ) = ∩ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | mrelatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 4 | 1 | ipobas | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 6 | 2 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 7 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐼 ∈ Poset ) |
| 9 | simp2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝑈 ⊆ 𝐶 ) | |
| 10 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ∩ 𝑈 ∈ 𝐶 ) | |
| 11 | intss1 | ⊢ ( 𝑥 ∈ 𝑈 → ∩ 𝑈 ⊆ 𝑥 ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∩ 𝑈 ⊆ 𝑥 ) |
| 13 | simpl1 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 14 | 10 | adantr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∩ 𝑈 ∈ 𝐶 ) |
| 15 | 9 | sselda | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
| 16 | 1 3 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∩ 𝑈 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( ∩ 𝑈 ( le ‘ 𝐼 ) 𝑥 ↔ ∩ 𝑈 ⊆ 𝑥 ) ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ( ∩ 𝑈 ( le ‘ 𝐼 ) 𝑥 ↔ ∩ 𝑈 ⊆ 𝑥 ) ) |
| 18 | 12 17 | mpbird | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∩ 𝑈 ( le ‘ 𝐼 ) 𝑥 ) |
| 19 | simpll1 | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 20 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑦 ∈ 𝐶 ) | |
| 21 | simpl2 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) → 𝑈 ⊆ 𝐶 ) | |
| 22 | 21 | sselda | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
| 23 | 1 3 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥 ↔ 𝑦 ⊆ 𝑥 ) ) |
| 24 | 19 20 22 23 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥 ↔ 𝑦 ⊆ 𝑥 ) ) |
| 25 | 24 | biimpd | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 26 | 25 | ralimdva | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 → ∀ 𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥 ) ) |
| 27 | 26 | 3impia | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ∀ 𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥 ) |
| 28 | ssint | ⊢ ( 𝑦 ⊆ ∩ 𝑈 ↔ ∀ 𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥 ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ⊆ ∩ 𝑈 ) |
| 30 | simp11 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 31 | simp2 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ∈ 𝐶 ) | |
| 32 | 10 | 3ad2ant1 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ∩ 𝑈 ∈ 𝐶 ) |
| 33 | 1 3 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ ∩ 𝑈 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) ∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈 ) ) |
| 34 | 30 31 32 33 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ( 𝑦 ( le ‘ 𝐼 ) ∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈 ) ) |
| 35 | 29 34 | mpbird | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ( le ‘ 𝐼 ) ∩ 𝑈 ) |
| 36 | 3 5 6 8 9 10 18 35 | posglbdg | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ( 𝐺 ‘ 𝑈 ) = ∩ 𝑈 ) |