This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mreclatGOOD.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| Assertion | mreclat | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | 1 | ipobas | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 3 | eqidd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) | |
| 4 | eqidd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) | |
| 5 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 6 | 5 | a1i | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
| 7 | mreuniss | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ 𝑋 ) | |
| 8 | eqid | ⊢ ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 ) | |
| 9 | 8 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 10 | 7 9 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 11 | simpl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 12 | simpr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝑥 ⊆ 𝐶 ) | |
| 13 | eqidd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) | |
| 14 | 8 | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) = ∩ { 𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 15 | 7 14 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) = ∩ { 𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 16 | 1 11 12 13 15 | ipolubdm | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( 𝑥 ∈ dom ( lub ‘ 𝐼 ) ↔ ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) ) |
| 17 | 10 16 | mpbird | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝑥 ∈ dom ( lub ‘ 𝐼 ) ) |
| 18 | ssv | ⊢ 𝑦 ⊆ V | |
| 19 | int0 | ⊢ ∩ ∅ = V | |
| 20 | 18 19 | sseqtrri | ⊢ 𝑦 ⊆ ∩ ∅ |
| 21 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦 ∈ 𝐶 ) → 𝑥 = ∅ ) | |
| 22 | 21 | inteqd | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦 ∈ 𝐶 ) → ∩ 𝑥 = ∩ ∅ ) |
| 23 | 20 22 | sseqtrrid | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ⊆ ∩ 𝑥 ) |
| 24 | 23 | rabeqcda | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = 𝐶 ) |
| 25 | 24 | unieqd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∪ 𝐶 ) |
| 26 | mreuni | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) | |
| 27 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 28 | 26 27 | eqeltrd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 ∈ 𝐶 ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ∪ 𝐶 ∈ 𝐶 ) |
| 30 | 25 29 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 31 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) | |
| 32 | unimax | ⊢ ( ∩ 𝑥 ∈ 𝐶 → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∩ 𝑥 ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∩ 𝑥 ) |
| 34 | 33 31 | eqeltrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 35 | 34 | 3expa | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 36 | 30 35 | pm2.61dane | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 37 | eqidd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) | |
| 38 | eqidd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ) | |
| 39 | 1 11 12 37 38 | ipoglbdm | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( 𝑥 ∈ dom ( glb ‘ 𝐼 ) ↔ ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) ) |
| 40 | 36 39 | mpbird | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝑥 ∈ dom ( glb ‘ 𝐼 ) ) |
| 41 | 2 3 4 6 17 40 | isclatd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |