This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isclat.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| isclat.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | isclat | ⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isclat.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | isclat.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | fveq2 | ⊢ ( 𝑙 = 𝐾 → ( lub ‘ 𝑙 ) = ( lub ‘ 𝐾 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑙 = 𝐾 → ( lub ‘ 𝑙 ) = 𝑈 ) |
| 6 | 5 | dmeqd | ⊢ ( 𝑙 = 𝐾 → dom ( lub ‘ 𝑙 ) = dom 𝑈 ) |
| 7 | fveq2 | ⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = ( Base ‘ 𝐾 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = 𝐵 ) |
| 9 | 8 | pweqd | ⊢ ( 𝑙 = 𝐾 → 𝒫 ( Base ‘ 𝑙 ) = 𝒫 𝐵 ) |
| 10 | 6 9 | eqeq12d | ⊢ ( 𝑙 = 𝐾 → ( dom ( lub ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ↔ dom 𝑈 = 𝒫 𝐵 ) ) |
| 11 | fveq2 | ⊢ ( 𝑙 = 𝐾 → ( glb ‘ 𝑙 ) = ( glb ‘ 𝐾 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑙 = 𝐾 → ( glb ‘ 𝑙 ) = 𝐺 ) |
| 13 | 12 | dmeqd | ⊢ ( 𝑙 = 𝐾 → dom ( glb ‘ 𝑙 ) = dom 𝐺 ) |
| 14 | 13 9 | eqeq12d | ⊢ ( 𝑙 = 𝐾 → ( dom ( glb ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ↔ dom 𝐺 = 𝒫 𝐵 ) ) |
| 15 | 10 14 | anbi12d | ⊢ ( 𝑙 = 𝐾 → ( ( dom ( lub ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ∧ dom ( glb ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ) ↔ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
| 16 | df-clat | ⊢ CLat = { 𝑙 ∈ Poset ∣ ( dom ( lub ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ∧ dom ( glb ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ) } | |
| 17 | 15 16 | elrab2 | ⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |