This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015) See mrelatlubALT for an alternate proof.
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| mrelatlub.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | ||
| mrelatlub.l | ⊢ 𝐿 = ( lub ‘ 𝐼 ) | ||
| Assertion | mrelatlub | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | mrelatlub.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 3 | mrelatlub.l | ⊢ 𝐿 = ( lub ‘ 𝐼 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 5 | 1 | ipobas | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 7 | 3 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐿 = ( lub ‘ 𝐼 ) ) |
| 8 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 9 | 8 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐼 ∈ Poset ) |
| 10 | simpr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝑈 ⊆ 𝐶 ) | |
| 11 | uniss | ⊢ ( 𝑈 ⊆ 𝐶 → ∪ 𝑈 ⊆ ∪ 𝐶 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ ∪ 𝐶 ) |
| 13 | mreuni | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝐶 = 𝑋 ) |
| 15 | 12 14 | sseqtrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ 𝑋 ) |
| 16 | 2 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 17 | 15 16 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 18 | elssuni | ⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈 ) | |
| 19 | 2 | mrcssid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ∪ 𝑈 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 20 | 15 19 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 21 | 18 20 | sylan9ssr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 22 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 23 | 10 | sselda | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
| 24 | 17 | adantr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 25 | 1 4 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐶 ∧ ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) → ( 𝑥 ( le ‘ 𝐼 ) ( 𝐹 ‘ ∪ 𝑈 ) ↔ 𝑥 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( le ‘ 𝐼 ) ( 𝐹 ‘ ∪ 𝑈 ) ↔ 𝑥 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
| 27 | 21 26 | mpbird | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ( le ‘ 𝐼 ) ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 28 | simp1l | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 29 | simplll | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 30 | simplr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑈 ⊆ 𝐶 ) | |
| 31 | 30 | sselda | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
| 32 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑦 ∈ 𝐶 ) | |
| 33 | 1 4 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑥 ⊆ 𝑦 ) ) |
| 34 | 29 31 32 33 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑥 ⊆ 𝑦 ) ) |
| 35 | 34 | biimpd | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( le ‘ 𝐼 ) 𝑦 → 𝑥 ⊆ 𝑦 ) ) |
| 36 | 35 | ralimdva | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 → ∀ 𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦 ) ) |
| 37 | 36 | 3impia | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ∀ 𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦 ) |
| 38 | unissb | ⊢ ( ∪ 𝑈 ⊆ 𝑦 ↔ ∀ 𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦 ) | |
| 39 | 37 38 | sylibr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ∪ 𝑈 ⊆ 𝑦 ) |
| 40 | simp2 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → 𝑦 ∈ 𝐶 ) | |
| 41 | 2 | mrcsscl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) |
| 42 | 28 39 40 41 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) |
| 43 | 17 | 3ad2ant1 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 44 | 1 4 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐹 ‘ ∪ 𝑈 ) ( le ‘ 𝐼 ) 𝑦 ↔ ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) ) |
| 45 | 28 43 40 44 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( ( 𝐹 ‘ ∪ 𝑈 ) ( le ‘ 𝐼 ) 𝑦 ↔ ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) ) |
| 46 | 42 45 | mpbird | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( 𝐹 ‘ ∪ 𝑈 ) ( le ‘ 𝐼 ) 𝑦 ) |
| 47 | 4 6 7 9 10 17 27 46 | poslubdg | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |