This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| mrelatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | ||
| Assertion | mrelatglb0 | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐺 ‘ ∅ ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 2 | mrelatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 4 | 1 | ipobas | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 5 | 2 | a1i | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 6 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 7 | 6 | a1i | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
| 8 | 0ss | ⊢ ∅ ⊆ 𝐶 | |
| 9 | 8 | a1i | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∅ ⊆ 𝐶 ) |
| 10 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 11 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ 𝑋 ( le ‘ 𝐼 ) 𝑥 | |
| 12 | 11 | rspec | ⊢ ( 𝑥 ∈ ∅ → 𝑋 ( le ‘ 𝐼 ) 𝑥 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ ∅ ) → 𝑋 ( le ‘ 𝐼 ) 𝑥 ) |
| 14 | mress | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ⊆ 𝑋 ) | |
| 15 | 10 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) |
| 16 | 1 3 | ipole | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑋 ↔ 𝑦 ⊆ 𝑋 ) ) |
| 17 | 15 16 | mpd3an3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑋 ↔ 𝑦 ⊆ 𝑋 ) ) |
| 18 | 14 17 | mpbird | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ( le ‘ 𝐼 ) 𝑋 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ ∅ 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ( le ‘ 𝐼 ) 𝑋 ) |
| 20 | 3 4 5 7 9 10 13 19 | posglbdg | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐺 ‘ ∅ ) = 𝑋 ) |