This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ipopos.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| Assertion | ipopos | ⊢ 𝐼 ∈ Poset |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipopos.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | 1 | fvexi | ⊢ 𝐼 ∈ V |
| 3 | 2 | a1i | ⊢ ( 𝐹 ∈ V → 𝐼 ∈ V ) |
| 4 | 1 | ipobas | ⊢ ( 𝐹 ∈ V → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 5 | eqidd | ⊢ ( 𝐹 ∈ V → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) ) | |
| 6 | ssid | ⊢ 𝑎 ⊆ 𝑎 | |
| 7 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 8 | 1 7 | ipole | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑎 ⊆ 𝑎 ) ) |
| 9 | 8 | 3anidm23 | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑎 ⊆ 𝑎 ) ) |
| 10 | 6 9 | mpbiri | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ) → 𝑎 ( le ‘ 𝐼 ) 𝑎 ) |
| 11 | 1 7 | ipole | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ↔ 𝑎 ⊆ 𝑏 ) ) |
| 12 | 1 7 | ipole | ⊢ ( ( 𝐹 ∈ V ∧ 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑏 ⊆ 𝑎 ) ) |
| 13 | 12 | 3com23 | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑏 ⊆ 𝑎 ) ) |
| 14 | 11 13 | anbi12d | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑎 ) ↔ ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) |
| 15 | simpl | ⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → 𝑎 ⊆ 𝑏 ) | |
| 16 | simpr | ⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → 𝑏 ⊆ 𝑎 ) | |
| 17 | 15 16 | eqssd | ⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → 𝑎 = 𝑏 ) |
| 18 | 14 17 | biimtrdi | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑎 ) → 𝑎 = 𝑏 ) ) |
| 19 | sstr | ⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐 ) → 𝑎 ⊆ 𝑐 ) | |
| 20 | 19 | a1i | ⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐 ) → 𝑎 ⊆ 𝑐 ) ) |
| 21 | 11 | 3adant3r3 | ⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ↔ 𝑎 ⊆ 𝑏 ) ) |
| 22 | 1 7 | ipole | ⊢ ( ( 𝐹 ∈ V ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑏 ⊆ 𝑐 ) ) |
| 23 | 22 | 3adant3r1 | ⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑏 ⊆ 𝑐 ) ) |
| 24 | 21 23 | anbi12d | ⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑐 ) ↔ ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐 ) ) ) |
| 25 | 1 7 | ipole | ⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑎 ⊆ 𝑐 ) ) |
| 26 | 25 | 3adant3r2 | ⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑎 ⊆ 𝑐 ) ) |
| 27 | 20 24 26 | 3imtr4d | ⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑐 ) → 𝑎 ( le ‘ 𝐼 ) 𝑐 ) ) |
| 28 | 3 4 5 10 18 27 | isposd | ⊢ ( 𝐹 ∈ V → 𝐼 ∈ Poset ) |
| 29 | fvprc | ⊢ ( ¬ 𝐹 ∈ V → ( toInc ‘ 𝐹 ) = ∅ ) | |
| 30 | 1 29 | eqtrid | ⊢ ( ¬ 𝐹 ∈ V → 𝐼 = ∅ ) |
| 31 | 0pos | ⊢ ∅ ∈ Poset | |
| 32 | 30 31 | eqeltrdi | ⊢ ( ¬ 𝐹 ∈ V → 𝐼 ∈ Poset ) |
| 33 | 28 32 | pm2.61i | ⊢ 𝐼 ∈ Poset |